Abstract:
A molding element of a mold for molding and vulcanizing a tire tread, this tread having a tread surface intended to come into contact with the ground when the tire is rolling. This molding element has a molding surface adapted to mold part of the tire tread surface and a blade adapted to mold a sipe or a groove in the tread. The molding element has two lamella positioned on either side of the blade at a distance from this blade, each lamella having a bulge at one extremity far away from the molding surface. Each lamella having cutting means extending from the bulge.
Abstract:
A tire tread with certain features and a method for manufacturing such a tire tread are provided. More particularly, a tire tread is provided that has layers of apertures where some layers remain covered until after a certain amount of tread wear has occurred. Such apertures can comprise, for example, sipes, grooves, or other apertured features in the tread. A method of making such tire tread is also provided.
Abstract:
A tire molding element for vulcanization molding a tire tread is disclosed herein. The tire includes at least one thin plate including a protrusion which protrudes from the main body in the thickness direction of the thin plate and guides the cut covering layer in the depth direction of the green tire in such a way as to cover at least a portion of the transverse side surface of the ground contact element, and the at least one thin plate comprises at least two cutting means separated in the thickness direction of the at least one thin plate, at an end portion on the opposite side to the molding surface.
Abstract:
Molding element for molding and vulcanizing a tire tread, having a tread surface contacting the ground when rolling, having a molding surface to mold part of the tread surface and a blade of length and of height H to mold a sipe or a groove in the tread, having a rounded end extending along its length in a direction of extension X. The molding element has two cutting means to cut a cover layer applied to a green form of the tire, positioned on either side of the blade at a certain distance from this blade, each cutting means having a cutting edge extending in the direction of extension, making an acute angle α in a sectional drawing perpendicular to direction of extension X able to cut the cover layer, the distance between this cutting edge and the molding surface being lower than the height H of the blade.
Abstract:
A method and an apparatus for forming a carved groove of a green tire capable of forming a carved groove of a necessary depth without being influenced by variation of outer diameters of the green tire is provided. In a method and an apparatus for forming a carved groove for a lug groove with a cutter on an outer circumferential surface of a green tire before curing, a distance sensor is moved along a portion to be carved on the outer circumferential surface of the green tire to measure outer diameters of the portion to be carved, cut shape data for a green tire having an ideal shape stored in memory beforehand is revised on the basis of the measured outer diameters, and the cutter is moved in accordance with the revised cut shape data for carving.
Abstract:
A tire tread with certain features and a method for manufacturing such a tire tread are provided. More particularly, a tire tread is provided that has layers of apertures where some layers remain covered until after a certain amount of tread wear has occurred. Such apertures can comprise, for example, sipes, grooves, or other apertured features in the tread. A method of making such tire tread is also provided.
Abstract:
A tire with certain tread features and a method for manufacturing the tread for such a tire are provided. More particularly, a tire and method for manufacturing a tire having a tread portion with sipes that can be of minimal thickness and varying geometries, densities, and profiles may be provided. The sipes can also be hidden until after a period of tread wear has occurred.
Abstract:
A method and apparatus for grooving a tire tread in which a computerized numerical controller regulates the positional relationships between the tire and a hot cutting knife. The controller, through a plurality of servo motors, causes the tire to rotate in a vertical plane while effecting lateral and rotational movement of the cutter knife in each of two planes. During the cutting operation, the controller regulates the temperature of the cutting knife in accordance with the contour of the cut and the rate at which it is being made. Additionally, the computerized numerical controller is operator-programmable, providing for the generation of a program while the knife is caused to trace a tread design. The method and apparatus achieves simultaneous five-axis control of the tire grooving operation with concurrent regulation of the knife temperature.
Abstract:
A molding element of a mold for molding and vulcanizing a tire tread, this tread having a tread surface intended to come into contact with the ground when the tire is rolling. This molding element has a molding surface adapted to mold part of the tire tread surface and a blade adapted to mold a sipe or a groove in the tread. The molding element has two lamella positioned on either side of the blade at a distance from this blade, each lamella having a bulge at one extremity far away from the molding surface. Each lamella having cutting means extending from the bulge.
Abstract:
A visual wear indicating feature is incorporated into the tread pattern to provide progressive, incremental indications to the customer regarding the amount of useable tread remaining on the tire.