Abstract:
A method and apparatus for manufacturing recyclable paper pallets utilizes spool-shaped laminated supports which are wound on a spool-shaped mandrel utilizing adhesive coated paper strips. In one aspect of the invention, the spool-shaped laminated supports can be glued to conventional upper and lower pallet skin sheets also made of paper material, such as corrugated paperboard. In another aspect of the invention, the spool-shaped pallet supports are utilized in a system in which the pallet is integrated directly into a pre-strapped load. In this system, a slip sheet is strapped directly to the bottom of a load and the slip sheet is glued directly to the upper faces of an array of pallet supports, sufficient to support the load and to provide the spacers or standoffs for subsequent insertion of lifting equipment, such as a lifting fork, beneath the load. The inherent rigidity of the strapped load may be sufficient to compensate for the lack of rigidity of the thin paper slip sheet. If the supported load does not have adequate structural rigidity, a lower structural skin sheet may be glued to the lower faces of the pallet support array to provide the strength in compression needed to lift the palletized load. The system of the present invention provides wide flexibility allowing pallet systems to be utilized which are adequate to support the intended load with a minimum use of materials. The spool-shaped supports may be manufactured on-site and the pallets formed on the in-line system processing the material loads. An alternate pallet-support is made from a strip cut from a continuous web of single face corrugated paperboard.
Abstract:
A method and apparatus for forming the free end of a length of metal foil wrap corrugated tubing, in which a free end of the tubing is first crimped against a mandrel, then folded to extend radially inwardly, then folded further to extend axially inwardly within the inside diameter of the tubing end, and then compacted axially to bring the corrugations into facing abutment with each other and tighten the formed end of the tubing against unwrapping of the metal foil. The crimping operation involves closure of a plurality of jaws around the free end of the tubing and deforming the tubing end against a tapering surface on an internal mandrel. The tubing is then gripped between jaws that form a radially indented channel in the periphery of the tubing, both to enhance the clamping action of the jaws and to isolate the formed end of the tubing from the remainder of the tubing. The clamped length of tubing is then engaged by a folding tool to fold the crimped end of the tubing radially inwardly, and then by a compacting tool further to fold the end axially into the tubing and then to compact the end portion of the tubing to form a tight tubing end joint.
Abstract:
The object of the present invention is to recondition cardboard or similar tubes with deformed parts, notably at the ends, whilst avoiding the usual milling techniques and without removing any material. The deformed parts of each tube (1) are recalibrated to their initial thickness by being rolled between pairs of rollers (15, 20), of which at least one is driven in rotation. The tube (1) is then supported only by the rollers. Each internal roller (20) can be mounted on a movable support (18) which brings it into its working position in the tube. Application for the reconditioning of tubes serving as supports for textile yarn reels.
Abstract:
A method and apparatus for manufacturing recyclable paper pallets utilizes spool-shaped laminated supports which are wound on a spool-shaped mandrel utilizing adhesive coated paper strips. In one aspect of the invention, the spool-shaped laminated supports can be glued to conventional upper and lower pallet skin sheets also made of paper material, such as corrugated paperboard. In another aspect of the invention, the spool-shaped pallet supports are utilized in a system in which the pallet is integrated directly into a pre-strapped load. In this system, a slip sheet is strapped directly to the bottom of a load and the slip sheet is glued directly to the upper faces of an array of pallet supports, sufficient to support the load and to provide the spacers or standoffs for subsequent insertion of lifting equipment, such as a lifting fork, beneath the load. The inherent rigidity of the strapped load may be sufficient to compensate for the lack of rigidity of the thin paper slip sheet. If the supported load does not have adequate structural rigidity, a lower structural skin sheet may be glued to the lower faces of the pallet support array to provide the strength in compression needed to lift the palletized load. The system of the present invention provides wide flexibility allowing pallet systems to be utilized which are adequate to support the intended load with a minimum use of materials. The spool-shaped supports may be manufactured on-site and the pallets formed on the in-line system processing the material loads. An alternate pallet support is made from a strip cut from a continuous web of single face corrugated paperboard.