Abstract:
A tread surface of a tread portion of a pneumatic tire comprises a circumferential main groove and a projection body extending continuously in a tire circumferential direction, the projection body projecting in a tire radial direction from a groove bottom of the circumferential main groove; and connecting portions connecting the projection body and groove walls of the circumferential main groove alternately disposed in the tire circumferential direction on first and second sides of the projection body in a tire lateral direction; a relationship of L to a total of V1 to Vn and W1 to Wn satisfying from 0.7 L to 1.5 L, where L is a circumferential length of the projection body, and V1 to Vn and W1 to Wn are circumferential dimensions of the connecting portions on the first and second sides of the projection body in the tire lateral direction, respectively.
Abstract:
The present invention provides a pneumatic tire including: a groove formed in a tread, the groove having a groove bottom and groove side surfaces arising from the groove bottom; and a projection projecting from the groove bottom, wherein the projection includes a low-step portion located at a low position with reference to the groove bottom and a high-step portion located at a high position with reference to the groove bottom, the low-step portion has a first-side inclined surface inclined in a depth direction of the groove along a first groove side surface of the groove and a second-side inclined surface inclined in the depth direction of the groove along a second groove side surface of the groove, and the first-side inclined surface and the second-side inclined surface are inclined in different directions from each other.
Abstract:
A tire for a heavy goods vehicle, having a tread having a tread surface provided in the new state with at least one groove delimited by opposing side walls, this groove opening onto the tread surface in a discontinuous manner by way of a plurality of portions that are open towards the exterior of the tread, these open portions having two ends that are extended under the tread surface by channels having inlets connected to the ends of the open portions, these inlets to the channels having a mean surface area S. This tread is such that each open portion on the tread surface is provided at each of its ends with a closure device for partially closing the cross section of the inlets to the channels when the tire is running and for leaving a passage unclosed.
Abstract:
A tire 1 according to the present invention comprises: a circumferential groove 12 formed in a tread portion; a land portion 22 divided by the circumferential groove 12; and transverse grooves formed in the land portion. The transverse grooves comprise a first transverse groove 32 dividing the land portion into several blocks, and a second transverse groove 51 dividing a block 42 divided by the first transverse groove into a first block portion 61 and a second block portion 62. A groove depth of the circumferential groove contacting the second block is smaller than the groove depth of the circumferential groove contacting the first block.
Abstract:
A pneumatic tire 1 which includes a plurality of rib-shaped land portions extending in a tire-circumferential-direction and in which a circumferential groove is formed extending in the tire-circumferential-direction between the land portions. The circumferential groove is provided with an intra-groove groove formed to recess inwardly in a tire-radial-direction from the circumferential groove while having its upper ends at a groove bottom of the circumferential groove. Paired inner wall surface and outer wall surface forming the intra-groove groove each continuously extend in tire-circumferential-direction while meandering in tread-width-direction. The intra-groove groove includes a wide groove portion in which a groove width of the intra-groove groove in tread-width-direction is a predetermined width; and a narrow groove portion which is continuous with the wide groove portion and which has a narrower width than the predetermined width. The wide groove portion and the narrow groove portion are alternately provided in tire-circumferential-direction.
Abstract:
A pneumatic tire includes a plurality of protrusions on a bottom of each of the grooves. The height of the protrusion is variable in a profile of the protrusion in a circumference direction of the pneumatic. The protrusion has at least one peak portion that protrudes away from a center of the pneumatic tire. The pneumatic tire further includes a connection member between the protrusion and an adjacent one of the lands, the connection member having a first end toward the land and a second end toward the peak portion, a height of the first end from the bottom of the groove being larger than that of the second end.
Abstract:
A heavy duty tire comprises a tread portion provided with four or five circumferential grooves so as to axially divide the tread portion into five or six rib portions. The five or six rib portions are a pair of shoulder rib portions each provided with shoulder lateral groove, and three or four crown rib portions each provided with crown lateral grooves. The crown lateral grooves extend across the entire width of the crown rib portion. The shoulder lateral grooves extend axially outwardly from an axially inner edge of the shoulder rib portion so as to terminate at an axial distance of from 78 to 88% of the axial width of the shoulder rib portion from the above-mentioned axially inner edge. The depth of the circumferential grooves is 15 to 20 mm. The depth of the crown lateral grooves is 9 to 30% of the depth of the circumferential grooves. The depth of the shoulder lateral grooves is 9 to 25% of the depth of the circumferential grooves. The tread width TW is in a range of 0.78 to 0.87 times the cross sectional width SW of the tire.
Abstract:
A heavy duty tire comprises a tread portion provided with a center rib, shoulder ribs and middle ribs therebetween. The middle ribs are provided with closed-end sipes. The sipe comprises: an axially inner segment and axially outer segment inclined at an angle of from 30 to 60 degrees with respect to the tire circumferential direction; and a middle segment therebetween inclined in a direction crosswise to the axially inner and outer segments. The angle β1 between the axially inner segment and middle segment is from 90 to 110 degrees. The angle β2 between the axially outer segment and middle segment is from 90 to 110 degrees. The axial length SW of the closed-end sipe measured from the axially inner end to the axially outer end thereof is from 0.50 to 0.90 times the axial width LW of the middle rib.
Abstract:
A tire (10) having a tread (12) includes a plurality of laterally spaced, circumferentially extending continuous ribs (11) defining grooves (14). Each groove has oppositely facing sidewalls (20, 22) and a bottom surface (30). A first set of stone bumpers is provided with each stone bumper (18) projecting laterally from one of the sidewalls with an end (24) extending towards the other sidewall of the groove. A second set of stone bumpers is provided with each stone bumper (18′) projecting from the other sidewall with an end (26) extending towards the one sidewall of the groove. Each stone bumper of the first and second sets of stone bumpers 1) is integral with the associated sidewall and with a portion of the bottom surface of the groove, and 2) includes a cutout (34) defining a surface that is spaced from and in opposing relation to the bottom surface of the groove.
Abstract:
A pneumatic tire has a ground contacting tread. The tread is located between a pair of opposing tire shoulders. The tire shoulders have circumferentially spaced sets of raised ribs. Each set of raised ribs has two to ten ribs, each rib extending in the radial direction relative to the center of rotation of the tire.