Abstract:
A tire includes a tread formed in a crown region of the tire and sidewall regions extending from the crown region to bead areas. The tire further includes a toroidal element extending across a crown region of the tire, and further extending along at least a portion of each sidewall region of the tire. The toroidal element has a central region located between inner and outer regions. The central region is more elastic than the inner and outer regions.
Abstract:
A run-flat tire includes a carcass, a tire side portion and a side reinforcement layer. The carcass bridges between a pair of bead portions. The tire side portion links between a bead portion and a tread portion. A carcass maximum width position of the tire side portion, at which the width of the carcass is at a maximum, is provided at the tire radial direction outer side relative to a position that is at 40% of the tire section height. The side reinforcement layer is provided at the tire width direction inner side of the carcass. A thickness of the side reinforcement layer at the position that is at 40% of the tire section height is not more than 65% of a thickness of the side reinforcement layer at the carcass maximum width position.
Abstract:
A run-flat radial tire including a carcass spanning between a pair of bead portions, a side reinforcement layer provided to tire side portions coupling the bead portion and the tread portion together, and a reinforcement cord layer. The reinforcement cord layer is provided at a tire radial direction outside of the carcass, includes cord inclined to a tire circumferential direction at an angle of inclination of from 60 degrees to 90 degrees, and is disposed such that, when the side reinforcement layer is projected along a tire radial direction, an overlap width P of the reinforcement cord layer overlapping with the side reinforcement layer has a length of 7.5% of a tire section height, or greater.
Abstract:
A run-flat tire (10) includes: a pair of bead portions (12); side wall portions 14 that are respectively connected to the bead portions (12); a carcass (16) that spans between the pair of bead portions (12) and that includes a main body portion (16A) positioned between bead cores (24), and a folded-back portion (16B) folded back from an inner side toward an outer side about each bead core (24); a tread (18) that is provided at the tire radial direction outer side of the main body portion (16A); a side reinforcing layer (20) that is disposed at a tire width direction inner side of the main body portion (16A) and that is configured so as to respectively gradually decrease in thickness toward a crown portion (16C) of the carcass (16) and toward the bead portion (12); and side rubber (22) (a side layer) that is disposed in the side wall portion (14) at the tire outer side of the main body portion (16A), that configures a tire outer face, and that satisfies Gs/Gt6≦0.35, wherein Gs is a thickness of the side rubber (22) and Gt6 is an overall thickness of the side wall portion (14) at a position of a maximum width CW of the main body portion (16A) in the tire width direction.
Abstract:
A side wall reinforced run flat tire, wherein a second carcass layer that does not reach a bead core is disposed along the outer peripheral surface of a carcass layer. A position of an outer peripheral edge of a bead filler, a relationship between a rubber thickness Gc of the inner side and a rubber thickness Ga of an outer side taken on the line X normal to the rim line and centered on the carcass layer, a relationship between the rubber thicknesses Ga and Gb of the side wall rubber in an upper region of a bead portion, and a position of a folded up end of the carcass layer are each stipulated.
Abstract:
A pneumatic tire has a designated vehicle inner/outer side orientation for when mounted on a vehicle, and includes: a reinforcing rubber layer disposed in sidewall portions on sides in a tire lateral direction, the reinforcing rubber layer having a crescent shaped meridian cross-section; wherein a radius of curvature with an arc joining intersections of straight lines and a tire external contour, and a radius of curvature with an arc joining intersections of the straight lines and a carcass layer have a relationship such that, on the vehicle outer side, a radius of curvature of the carcass layer is large with respect to a radius of curvature of the tire external contour, and on the vehicle inner side, a radius of curvature of the carcass layer is small with respect to a radius of curvature of the tire external contour.
Abstract:
A run-flat tire 1 comprises a carcass 6, a pair of side reinforcing rubber layers 9, and a pair of sidewall rubber components 10. At a tire maximum-width position, a first side reinforcing rubber layer 9A disposed in the side of a first bead portion has a thickness B1 greater than a thickness B2 of a second side reinforcing rubber layer disposed in the side of a second bead portion, and a first sidewall rubber component disposed in the side of the first bead portion has a thickness A1 smaller than a thickness A2 of a second sidewall rubber component disposed in the side of the second bead portion.
Abstract:
A run-flat radial tire has a tire section height SH equal to or greater than 115 mm and is equipped with a side-reinforcing rubber layer extending along an inner surface of a carcass from one tire side portion to another tire side portion wherein a tire equatorial plane CL is sandwiched in between the one tire side portion and the another tire side portion, wherein a thickness GE of the side-reinforcing rubber layer at the position of the tire equatorial plane and a thickness GA of the side-reinforcing rubber layer at positions where the carcass reaches its maximum width satisfy the relational expression GE≦0.6×GA.
Abstract:
A tire includes: bead cores; a carcass; a bead filler that extends along an outer face of the carcass from the bead core toward a tire radial direction outer side; and side reinforcing rubber that is provided at a tire side portion that extends in the tire radial direction along an inner face of the carcass, that decreases in thickness on progression toward the bead core side and toward a tread portion side, that has an end portion at the bead core side that overlaps with bead filler with the carcass sandwiched therebetween, and that has an elongation at break of 130% or above, wherein a thickness of the side reinforcing rubber at a midpoint between an end portion at the tire radial direction outer side of the bead filler running along the carcass, and the end portion is 40% to 80% of a maximum thickness.
Abstract:
A run flat tire with reinforced sides, wherein inner and outer rubber thickness ratios centered on a carcass layer in a side wall portion are stipulated and a side filler extending in the tire radial direction is embedded on the outer wall surface side of the side wall portion. In this run flat tire, the modulus of the side filler/modulus of a side reinforcing layer, the modulus of a rim cushion/a modulus of the side filler, the cross-sectional area of a bead filler/cross-sectional area of the side filler, the cross-sectional area of the side filler/cross-sectional area of the side reinforcing layer, the rubber hardness of the side reinforcing layer, and the material of belt cover layers are each stipulated.