Abstract:
In a pneumatic tire, a two-dimensional code is provided on a surface of side rubber provided in a side portion. The two-dimensional code is formed of a dot pattern including two types of gray scale elements identifiably formed using surface irregularities. A two-dimensional code range in a tire radial direction in which the two-dimensional code is provided lies outward or inward of a bead filler rubber edge located outward of bead filler rubber in the tire radial direction.
Abstract:
A tire has a tire center in the tire width direction. An intersection point of a carcass outer surface with a parallel line extending parallel with a rotation axis and passing through a tire maximum width position is denoted as P1. An intersection point of the parallel line LP with a side surface is denoted as P2. An intersection point of the parallel line with a protrusion portion outer surface of a protrusion portion is denoted as P3. A distance between the tire center and the intersection point P1 is denoted as W1. A distance between the tire center and the intersection point P3 is denoted as W3. A distance between the intersection point P1 and the intersection point P2 is denoted as G1. A distance between the intersection point P2 and the intersection point P3 is denoted as G2. 0.80≤W1/W3≤0.95 and 0.1≤G1/G2≤1.
Abstract:
To improve durability performance and rolling resistance performance in a well-balanced manner. It is a tire for heavy loads including a carcass ply (6A). A sidewall rubber (3G) includes an inside rubber part (15) on the carcass (6) side, and an outside rubber part (16) disposed on the outside thereof and forming a tire outer surface. The inside rubber part (15) has a loss tangent tan δ1 less than the outside rubber part (16), and their difference is 0.010 to 0.035. The inside rubber part (15) has a complex elastic modulus less than the outside rubber part (16), their difference is 0.5 to 1.4 (MPa). The outer end (15s) in the tire radial direction of the inside rubber part (15) contacts with the outer surface (2h) in the tire axial direction of the tread rubber (2G), and the inner end (15u) in the tire radial direction is disposed radially inside the outer end (6e) in the tire radial direction of the turned up portion (6b) of the carcass ply (6A).
Abstract:
A tire includes: a tread portion that comes into contact with a road surface; a sidewall portion connected to the tread portion; and a bead portion connected to an inner side of the side wall portion in a tire radial direction, wherein at least a part of the sidewall portion includes: a stain preventive rubber layer containing no antioxidant; and a paint layer adjacent to the stain preventive rubber layer and exposed on an outer surface of the sidewall portion, a tire radial outermost end of the paint layer is away from a bead toe outward in the tire radial direction by 65% or more of a tire cross-sectional height, and a tire radial outermost end of the stain preventive rubber layer is located outward in the tire radial direction relative to the tire radial outermost end of the paint layer.
Abstract:
In a pneumatic run flat tire in which an inner side reinforcing rubber layer having a falcated cross-section is disposed in a side wall portion, dynamic elastic moduli E′10A, E′10B, and E′10C and values T10A, T10B, and T10C of a tan δ at 60° C. of rubber compositions of each region of the inner side reinforcing rubber layer are configured so as to satisfy the relationships E′10A
Abstract:
A pneumatic tire is provided with a carcass layer and a sidewall rubber disposed on an outer side in a tire width direction of the carcass layer. Additionally, the pneumatic tire is provided with a resin coating applied on a predetermined region of a sidewall portion. Additionally, a minimum value of a wall thickness t of a rubber of the sidewall portion in the region applied with the resin coating is in a range of 0.05 mm≦t≦4.0 mm. Additionally, a thickness of the resin coating is in a range of 20 μm or more and 300 μm or less.
Abstract:
[Object] A pneumatic tire 2 which is excellent in durability is provided.[Solution] The tire 2 includes adhesive sheet layers 28. Each adhesive sheet layer 28 includes an interposed portion 58 and a protruding portion 60. The interposed portion 58 is interposed between a base layer 32 and a cap layer 34 of a tread 4. The protruding portion 60 is layered over a carcass 12. The adhesive sheet layers 28 are obtained by a rubber composition being crosslinked. The rubber composition contains a tackifier. A width W1 of the interposed portion 58 is preferably greater than or equal to 5 mm, and preferably not greater than 20 mm. A width W2 of the protruding portion 60 is preferably greater than or equal to 10 mm, and preferably not greater than 20 mm. A thickness of each adhesive sheet layer 28 is preferably greater than or equal to 0.5 mm, and preferably not greater than 2.0 mm. A ratio of an adhesive strength of each adhesive sheet layer 28 to an adhesive strength of the cap layer 34 is preferably greater than or equal to 1.30.
Abstract:
The present invention provides a tire including a side portion (104), a black rubber layer (113), a stain-preventing rubber layer (112) disposed adjacent to the black rubber layer, and a colored layer (111) disposed on the surface of the stain-preventing rubber layer and exposed on the outer surface of the side portion; a tire including a colored layer (207) disposed on the outer surface of the tire, and an underlayer rubber (208) disposed on the tire-interior side of the colored layer, wherein the colored layer is formed by curing a UV-curable paint; and a tire including a colored layer (302) on the surface of the side portion (301) of the tire, wherein the colored layer includes a marking (303).
Abstract:
A vehicle tire (1), includes: a tread (2) intended for rolling contact against a surface, the tread (2) having been formed with a tread pattern (20) including circumferential grooves (25) and transverse grooves (26) for removing water from a contact patch between the surface and the tire (1); a tire carcass (3) including at least one body cord (30) and a belt structure (32); a bead area (5) including a bead wire (50), a clinch (52), and an apex (54); a sidewall (4) including an outermost sidewall layer (41), a sideways rising portion of the clinch (52), a body cord (30), and an innerliner (31); the outermost sidewall layer (41) is constructed from a rubber compound which contains 0.2-0.5% by weight of aramid fiber having a fiber length of 1-5 mm.
Abstract:
A tire (34) includes a tread (38), a pair of sidewalls (42), a pair of beads (44), a carcass (46) laid between both of the beads (44) along an inside of the tread (38) and the sidewalls (42), and a pair of wings (40) positioned on an outside in an axial direction of the sidewalls (42) respectively. Each of the sidewalls (42) includes an inner layer (72) positioned on an outside of the carcass (46) in the axial direction and extended in a radial direction along the carcass (46) and an outer layer (74) positioned on a further outside of the inner layer (72) and extended in the radial direction along the inner layer (72). An inner end (82) of the outer layer (74) is positioned on an inside of an inner end (58) of each of the wings (40) in the radial direction. The inner layer (72) has a higher hardness than a hardness of the outer layer (74).