摘要:
A control apparatus of a variable damping force damper used to suspend a vehicle body of a vehicle is configured to set a target control quantity of the variable damping force damper based on a plurality of dynamic state quantities of the vehicle, wherein the plurality of dynamic state quantities include a vertical dynamic state quantity of the vehicle.
摘要:
In a vehicle height adjustment device, an operation amount of an actuator increases in accordance with supplied current, a detector detects a vehicle height, and a changer changes the vehicle height in accordance with the operation amount of the actuator. The changer shifts to a vehicle height increasing state or to a vehicle height decreasing state based on whether the operation amount is not higher than a predetermined amount. A controller controls the current supplied to the actuator to make the relative position have a target value. The controller determines a target current supplied to the actuator based on a control map that correlates a deviation between the target value of the relative position and a detection value to the target current.
摘要:
A damping force control apparatus includes a damping force control device controlling a damping force of a shock absorber provided between a sprung mass and an unsprung mass of each wheel of a vehicle, a detection device detecting at least an acceleration of the sprung mass in an up-down direction and a relative displacement between the sprung mass and the unsprung mass, a damping coefficient calculation device calculating a damping coefficient to be applied to the damping force control by the damping force control device based on detected results of the detection device, a sensed acceleration increment calculation device calculating a sensed acceleration increment corresponding to an increment of sense according to the Weber Fechner law on the basis of the detected results of the detection device, and a modification device modifying the damping coefficient in accordance with a sensed acceleration increment calculated by the sensed acceleration increment calculation device.
摘要:
An influencing device for influencing an active chassis that includes a plurality of controllable spring or damper units of a vehicle is provided. The influencing device includes a roadway sensor that produces sensor data relating to a roadway located in front of the vehicle in a direction of travel, the sensor data being used to acquire a roadway profile. The influencing device also includes a pilot control unit that determines, as a function of the acquired roadway profile, a pilot control variable that is used to adapt the setting of the spring or damper units to the acquired roadway profile. An input signal for a vehicle body control system, which is used to control the position of the vehicle body, is calculated on the basis of the pilot control variable.
摘要:
A damping force control device (1) for a shock absorber (Dn) interposed between a sprung member (Bn) and an unsprung member (Wn) of a vehicle (A) comprises a damping force varying mechanism (3) which supplements a minimum damping force (Fdn) that can be generated by the shock absorber (Dn) with a variable damping force (Fcn). The device (1) comprises a control portion (2) which calculates a deviation (εn) between a damping force target value (Fsn) and the minimum damping force (Fdn) (S207), and open-loop controls the damping force varying mechanism (3) using a variable damping force (Fcn) calculated on the basis of the deviation (εn) such that the damping force generated by the shock absorber (Dn) coincide with the damping force target value (Fsn) (S208-S212), thereby optimizing damping force control of the shock absorber (Dn), which has a non-linear damping characteristic.
摘要:
A control system for a motor vehicle subsystem comprises a reference model and a feedforward controller. The reference model computes desired states of the subsystem. The feedforward controller computes a first control value based on input from the reference model, and computes a second control value based on yaw rate of the vehicle and a control variable for the subsystem.
摘要:
A control system and method is disclosed for controlling an active suspension and a leveling system for a motor vehicle. The control system may use estimator, controller and management modules. The estimator module processes measured signals obtained from various components and sensors of the vehicle relating to modal displacements, velocities and accelerations, and calculates derived signals which are used as inputs to the controller module. The controller module calculates the desired damper force for each active damper based on motions of the vehicle body and wheels. The management module translates the desired active damper force into an appropriate set of control signals to control each active damper. These operations are performed for each active damper of the vehicle to control each damper in real time.
摘要:
A damping force control apparatus includes a damping force control device controlling a damping force of a shock absorber provided between a sprung mass and an unsprung mass of each wheel of a vehicle, a detection device detecting at least an acceleration of the sprung mass in an up-down direction and a relative displacement between the sprung mass and the unsprung mass, a damping coefficient calculation device calculating a damping coefficient to be applied to the damping force control by the damping force control device based on detected results of the detection device, a sensed acceleration increment calculation device calculating a sensed acceleration increment corresponding to an increment of sense according to the Weber Fechner law on the basis of the detected results of the detection device, and a modification device modifying the damping coefficient in accordance with a sensed acceleration increment calculated by the sensed acceleration increment calculation device.
摘要:
A semi-active control methodology is provided for a spring/mass system, for example a real-time adjustable shock absorber system. The methodology includes defining a plurality of operating zones based on system parameters and user-definable or preset inputs. The methodology also includes processing to account for non-inertial spring/mass system response and multidimensional forces acting on the system, and an acceleration hedge calculation to accurately define system operation at extrema of travel. The methodology is generally directed at producing a plurality of valve control signals, selecting among the valve control signals, and applying the selected control signal to the valve in a closed-loop feedback system to adjust the energy in the spring/mass system.
摘要:
A semi-active control methodology is provided for a spring/mass system, for example a real-time adjustable shock absorber system. The methodology includes defining a plurality of operating zones based on system parameters and user-definable or preset inputs. The methodology also includes processing to account for non-inertial spring/mass system response and multidimensional forces acting on the system, and an acceleration hedge calculation to accurately define system operation at extrema of travel. The methodology is generally directed at producing a plurality of valve control signals, selecting among the valve control signals, and applying the selected control signal to the valve in a closed-loop feedback system to adjust the energy in the spring/mass system.