Abstract:
A suspension device includes: a suspension including a damping device which damps a force generated between a vehicle body and a wheel; and a damping force control unit that increases a damping force of the damping device so as to be greater than the damping force generated when an acceleration of change in a stroke amount is less than a predetermined value determined in advance, when the acceleration of the change in the stroke amount is equal to or greater than the predetermined value, in which the stroke amount is an amount of displacement from a reference position of the wheel with respect to the vehicle body in an extension direction of the suspension.
Abstract:
A system for minimizing data transmission latency between a sensor and a suspension controller of a vehicle is described. The system includes: a state determination module that determines a physical state of the vehicle; a plurality of data paths for transmitting a first signal from the sensor to the suspension controller; a data path configurator of the controller that selects a first data path of the plurality of data paths based on at least one characteristic of the first data path and the physical state and configures the first data path to transmit the first signal; and an actuation module that generates an actuation signal to control a damping characteristic of the suspension actuator based on at least the first signal.
Abstract:
A damping control system for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame includes at least one adjustable shock absorber having an adjustable damping characteristic. The system also includes a controller coupled to each adjustable shock absorber to adjust the damping characteristic of each adjustable shock absorber, and a user interface coupled to the controller and accessible to a driver of the vehicle. The user interface includes at least one user input to permit manual adjustment of the damping characteristic of the at least one adjustable shock absorber during operation of the vehicle. Vehicle sensors are also be coupled to the controller to adjust the damping characteristic of the at least one adjustable shock absorber based vehicle conditions determined by sensor output signals.
Abstract:
A user device is identified as being operated by a vehicle occupant. An operation being performed by the user device is identified. A road condition is determined. A vehicle suspension is adjusted based at least in part on the identified user device operation and the road condition.
Abstract:
A vehicle damage detector includes: a vehicle with a motor, a suspension, a wheel, a sensor configured to report a suspension displacement; processor(s) configured to: estimate existing suspension damage based on the reports, project marginal future suspension damage based on a route and the existing suspension damage, calculate a marginal decrease in vehicle value from taking the projected route.
Abstract:
A damping control system for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame includes at least one adjustable shock absorber having an adjustable damping characteristic. The system also includes a controller coupled to each adjustable shock absorber to adjust the damping characteristic of each adjustable shock absorber, and a user interface coupled to the controller and accessible to a driver of the vehicle. The user interface includes at least one user input to permit manual adjustment of the damping characteristic of the at least one adjustable shock absorber during operation of the vehicle. Vehicle sensors are also be coupled to the controller to adjust the damping characteristic of the at least one adjustable shock absorber based vehicle conditions determined by sensor output signals.
Abstract:
A damping control system for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame includes at least one adjustable shock absorber having an adjustable damping characteristic. The system also includes a controller coupled to each adjustable shock absorber to adjust the damping characteristic of each adjustable shock absorber, and a user interface coupled to the controller and accessible to a driver of the vehicle. The user interface includes at least one user input to permit manual adjustment of the damping characteristic of the at least one adjustable shock absorber during operation of the vehicle. Vehicle sensors are also be coupled to the controller to adjust the damping characteristic of the at least one adjustable shock absorber based vehicle conditions determined by sensor output signals.
Abstract:
The present invention relates to an electronic control system for a motor vehicle, including a control device, an actuator, and at least one sensor. The control system according to the invention is characterized in that it has a sensor board for reading the data detected by the sensor, wherein the sensor board has a memory for storing actuator-specific data and an interface between the sensor board and the control device for transferring the data stored in the sensor board to the control device. The present invention also relates to a method for operating this type of control system.
Abstract:
The invention relates to a method for tuning the suspension of a motor vehicle. A linear motor (7, LM), in particular a linear electric motor (7, LM), is arranged in the suspension strut of each vibration damper (k2), in particular controllable vibration damper (k2), of at least one axle of the two axles of the chassis in a parallel manner relative to said vibration damper (k2). The linear motor (7, LM) is connected to the sprung mass (m2) of the motor vehicle on one side of the linear direction of action of the motor and to the unsprung mass (m1) of the motor vehicle on the other side via the same fixing points as the corresponding vibration damper (k2). Each linear motor (7, LM) is controlled by means of a controller dependent on measured values which are detected while the vehicle is traveling, and additional forces are added to and/or subtracted from the forces acting on the respective vibration damper (k2). The invention further relates to a suspension strut (1) for a chassis of a motor vehicle, comprising an upper hinge point (2) for connecting the suspension strut (1) to the sprung mass (m2) of the motor vehicle, a lower hinge point (3) for connecting the suspension strut (1) to the unsprung mass (m1) of the motor vehicle, and a pairing of a vibration damper (k2, 4) and a suspension spring (c2, 5), said pairing being arranged between the hinge points (2, 3), wherein a linear motor (7, LM) is arranged parallel to said pairing and extends between the same hinge points (2, 3).
Abstract:
A damping-force-adjustable-damper control device includes a target damping force setting unit which sets target damping force, a stroke position detecting unit which detects a stroke position of the damping-force adjustable damper, a stroke speed calculating unit which calculates a stroke speed, and a target output calculating unit which calculates a target output value to be output to the damping-force adjustable damper in accordance with an obtained target damping force and an obtained stroke speed. The control device also includes a processing-period setting unit which sets the processing periods of the stroke speed calculating unit and the target output calculating unit in accordance with a resonant frequency of unsprung mass, and which sets the processing period of the target damping force setting unit to be longer than the processing periods of the stroke speed calculating unit and the target output calculating unit in accordance with a resonant frequency of sprung mass.