Abstract:
A remotely controlled or autonomously controlled UAV is disclosed. The UAV has both wings and a deployable parachute to enable both fixed wing flight and paraglider flight. The UAV can fly at a higher speed to a mission area as a fixed wing craft, and loiter over the area as a powered paraglider. In some embodiments, the wings are jettisoned over the mission area and the UAV configured as a powered paraglider completes its mission. In other embodiments the UAV flies to the mission area as a fixed wing craft, deploys the parachute to loiter as a powered paraglider and then jettisons the parachute to fly under a fixed wing back to a base. The former embodiment cannot fly back to a base, they may be used to carry and deploy bombs or grenades, while the latter may be used for surveillance, deliver supplies or the like.
Abstract:
A deployment brake release system for use with an airborne guidance unit (AGU) of a parachute suitable for precision cargo delivery. The parachute includes deployment brake lines secured at one end to the edge of the canopy and connected at the other end through looped ends to motor control lines. The motor control lines are, in turn, engaged with the motor of the AGU. The deployment brake release system includes at least one hook mount having a hook secured to the AGU frame. The looped ends of the deployment brake lines are engaged with the hook during rigging so that, upon deployment, opening forces are applied to the hook mount rather than the motor. After full canopy inflation, the motor, via the motor control lines, pulls on the brake line looped ends to disengage them from the hook, transferring subsequent canopy loads to the AGU motor for the remainder of the flight. A method for releasing the deployment brake lines is also disclosed.
Abstract:
A grapple assembly suspended as an external load from an associated flying vehicle includes a frame member secured to an associated load line suspended from the associated vehicle. The frame member includes a first section, a second section, and a hinge joint connecting the first section to the second section. A grapple mechanism is mounted to the frame member second section. If desired, an aerodynamic body can be mounted to the frame member so as to encase at least a portion of the frame member. A release mechanism can be provided for jettisoning at least a portion of the aerodynamic body. The release mechanism can be triggered by an operator who can be stationed in the flying vehicle.
Abstract:
A wireless-controlled airplane includes a flying unit and an on-ground controller which is connected to the flying unit through a communication section and flies the flying unit. The flying unit includes a body, a drive section installed on the body, a propulsion apparatus which generates a propulsive force when driven by the drive section, a main wing including a plurality of wing elements which are installed so as to be able to move with respect to each other, an opening and closing mechanism which changes the relative positions of the wing elements to change the effective area of the main wing, and a dropping apparatus which selectively holds and drops a load. By changing the effective area of the main wing, the flight speed can be changed, so the capacity and size of the drive section for rotating the propulsion apparatus can be decreased.
Abstract:
A small radio controlled flying device propelled by a thermal engine (20) with pusher type airscrew (19) for remote sensing, the device being capable of short take-off and landing and flying at maximum speed of 35 Km/h. The device includes a pod and wings, the pod (1) being a rigid tricycle carriage dismountable by disengagement of substantially pyramidal jig with rear base (2) and front apex (7), lower plane (3), two lateral planes (4, 5) and an upper plane (6). The base is a welded one-piece element that includes the engine, the airscrew, a tank and the radio control. The apex is a welded one-piece element. The lower plane and the two lateral planes include spars (11, 12) assembled at the base and as the apex. The lower plane includes at its three end angles two rear wheels (8) and a front wheel (9), the front wheel being provided to protrude towards the front in the apex and the wheels being low pressure tires. The wings (13) are a caisson-type supple parachute and are connected to the pod in an adjustable fashion by two front slings (17), two braking slings (18) acting on the two flaps/ailerons.
Abstract:
An aircraft which is designed for remote controlled slow flight, indoor or in a small outdoor yard or field. The aerial lifting body is defined by a series of lightweight planar or thin airfoil surfaces (A1, A2, A3, A4) arranged in a radially symmetrical configuration. Suspended within the cavity (O) formed by the thin airfoil surfaces (A1, A2, A3, A4) is a thrust generating propeller system (C) that is angled upwardly and that can be regulated remotely so as to change the angle of the thrust vector within the cavity (O) for steering. Lifting, stability, turning, and general control of the direction of motion in flight is accomplished without any formal wings, rudder, tail, or control surfaces.
Abstract:
A remotely controlled or autonomously controlled UAV is disclosed. The UAV has both wings and a deployable parachute to enable both fixed wing flight and paraglider flight. The UAV can fly at a higher speed to a mission area as a fixed wing craft, and loiter over the area as a powered paraglider. In some embodiments, the wings are jettisoned over the mission area and the UAV configured as a powered paraglider completes its mission. In other embodiments the UAV flies to the mission area as a fixed wing craft, deploys the parachute to loiter as a powered paraglider and then jettisons the parachute to fly under a fixed wing back to a base. The former embodiment cannot fly back to a base, they may be used to carry and deploy bombs or grenades, while the latter may be used for surveillance, deliver supplies or the like.
Abstract:
A remotely controlled UAV is disclosed. The UAV includes a parachute, with a cylindrical power and control module suspended vertically below the parachute. In one embodiment, a propulsion source is mounted on top of the power and control module with control lines connected to the module below the propulsion source, and in another embodiment the power and control module is suspended from a point above a propulsion source. The UAV may be flown under a parachute and guided by remote control, or the control module (fuselage) may be released from the parachute and extendable fixed wings deployed to enable the UAV to be flown as a fixed wing vehicle.
Abstract:
The invention relates to an automatic takeoff method for an aircraft with a flexible airfoil, comprising a carriage suspended by rigging lines from an airfoil. According to said method:—said carriage is provided with an autopilot controlling actuators that control said rigging lines;—said airfoil is provided with an airfoil attitude sensor, comprising a biaxial accelerometer and a biaxial rate gyro, capable of defining the position of an airfoil reference frame in relation to the ground, and means for communicating with said autopilot;—during takeoff, information is received from said airfoil attitude sensor and transmitted to said autopilot for the purpose of controlling said actuators. The invention also relates to an airfoil for the implementation of said method, comprising an airfoil attitude sensor with an inertial unit with a biaxial accelerometer and a biaxial rate gyro, and means for communicating with an autopilot. The invention further relates to an aircraft comprising such an airfoil.
Abstract:
An orientation system is disclosed for a lighter-than-air aircraft having a lower stage suspended from an envelope. The orientation system includes cords interconnecting the envelope and the lower stage and means for adjusting the length of at least one of the cords between the lower stage and the envelope. Adjusting the length produces a shift in the angle of attack of the envelope with respect to the lower stage.