Abstract:
A method for using a temperature control loop in order to further develop process control during elongation of a cylindrical preform such that a component strand with high dimensional accuracy can be drawn even in the presence of temperature-effective defects during the elongation process: (a) the continuous measurement of a first temperature value, Ttop, at an upper measuring point on the surface of the cylindrical preform; (b) the continuous measurement of a second temperature value, Tbottom, at a lower measuring point; (c) calculation of a temperature distribution in the region between the measuring points Ttop and Tbottom, and determination of a modelled deformation temperature, Tmodel, using an algorithmic model taking with first and the second temperature values as model input parameters, and the modelled deformation temperature, Tmodel, as a regulating variable and the heating-zone temperature Toven as a manipulated variable for the temperature-control loop.
Abstract:
Drawing methods and drawing furnaces for drawing an optical fiber with small non-circularity by simple drawing system are provided. An optical fiber preform is received into a muffle tube and heated by a primary heater placed to surround the muffle tube. The optical fiber preform is heated such that a starting position of a meniscus portion is higher in its position than the top of the primary heater, wherein the meniscus portion is created at the bottom portion of the optical fiber preform.
Abstract:
The drawing method of the present invention uses a drawing furnace comprising a furnace muffle tube, a furnace body and a heater. According to the method, an optical fiber preform is inserted from the inlet of the furnace muffle tube, the optical fiber preform is melted by means of a heater, under a specified gas atmosphere, and is drawn toward the outlet of the furnace muffle tube by means of a specified drawing tension. The optical fiber preform and the drawing furnace used in this method both satisfy the condition of below-indicated formula (1): L/D≧8 (1) wherein L indicates the length of the furnace body in the drawing direction and D indicates the diameter of the optical fiber preform. Through this method, even for the case of drawing optical fibers having a large relative index difference between the central core and the cladding, optical fibers wherein residual amounts of lattice defects are sufficiently reduced and degradation of characteristics under a hydrogen atmosphere is sufficiently suppressed can be obtained efficiently and at low cost.
Abstract:
A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5,5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5,5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5,5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5,5′) which are below the separating plates (4, 17) and adapted to blow an inert gas into the inner tubes (5,5′) and the muffle tube (10), thereby preventing variations in diameter of the optical fiber (1a).
Abstract:
An optical fibre is provided with dispersion tuning holes (510) arranged in the wings of the modal field distribution (512). These dispersion tuning holes can be used in a holey or conventional fibre geometry to tune the fibre dispersion independently from the other modal properties, such as the mode shape, to generate birefringence and for other dispersion tuning applications. These holes contrast from the usual nullholey fibrenull holes in that they are generally carefully placed laterally offset from the geometrical axis of the optical fibre by a distance of the same order as the mode field radius. The placement and size of the proposed nulldispersion tuning holesnull ensures that they affect the dispersion of the mode in a desired manner.
Abstract:
A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5,5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5,5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5, 5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5, 5′) which are below the separating plates (4,17) and adapted to blow an inert gas into the inner tubes (5,5′) and the muffle tube (10), thereby preventing variations in diameter of the optical fiber (1a).
Abstract:
The present invention provides an improvement to a fiber optic draw furnace for drawing an optical fiber from a preform. The fiber optic draw furnace has a heating element having a shape for enclosing and heating the preform, and has a graphite liner having a corresponding shape to the shape of the heating element for providing a barrier between the heating element and the preform. In the fiber optic draw furnace, either the graphite liner is a high density extruded graphite liner that is impregnated with vitreous carbon completely through its entire graphite liner matrix, or the heating element is a high density extruded graphite heating element that is impregnated with vitreous carbon completely through its entire graphite heating element matrix, or both.
Abstract:
A high temperature induction furnace (10) for drawing lightguide fiber (52) from a silica preform (44) has an axially located tubular zirconium dioxide susceptor (34) therein. Prior to use, at least a portion of the inside surface of the susceptor (34) is coated with a vapor deposited silica "soot" (54). The silica soot (54) is then consolidated at an elevated temperature. Surprisingly, such a technique substantially eliminates migration of zirconium dioxide particles from the susceptor (34) to the preform (44) and/or the fiber (52) without deleteriously affecting the susceptor (34) and/or the operation of the furnace (10).
Abstract:
A method for drawing silica fibers utilizing an electrical resistance furnace includes the steps of heating a preform so that it begins to flow forming a fiber; pulling the fiber from the furnace; and flushing the preform and the fiber within the furnace with counteracting inert gas flows, the gas flows protecting the preform and the fiber from contamination.Apparatus used with the above-described method is also disclosed.
Abstract:
A wire-drawing optical fiber base material manufacturing method of heating an optical fiber base material by a heater and forming a drawing shape portion at an end portion. The manufacturing method includes: forming, by a flow-regulating member disposed adjacent to the heater, a gas flow such that formation, along a surface of the optical fiber base material, of a flow of a gas containing a Si compound generated from the optical fiber base material heated by the heater is inhibited; and forming, while maintaining the gas flow, the drawing shape portion by pulling part of the optical fiber base material softened by being heated by the heater.