Abstract:
Indigo-dyed garments are treated with an anti-ozone agent to prevent ozone-related degradation of the garments before laser finishing. Without treatment, the garments can exhibit color loss (e.g., color change or fading) from exposure to ozone in the atmosphere. The indigo-dyed garments with anti-ozone treatment can serve as base templates in a laser finishing process flow. The anti-ozone treatment of the base templates can include a rinse including an ascorbic acid or vitamin C constituent during a base preparation process. Then quantities of these base templates can manufactured and stored for periods of time without exhibiting ozone-related degradation effects.
Abstract:
The present disclosure discloses an atmospheric-pressure plasma equipment for fabric functional finishing and its application, and belongs to the field of textile printing and dyeing engineering. The atmospheric-pressure plasma equipment, including a discharging system, a grafting instrument and a cloth guider, can conduct continuous plasma treatment on fabrics under an atmospheric pressure, including plasma etching and plasma grafting, which breaks through the disadvantage of batch processing of vacuum plasma equipment. The equipment and method of the present disclosure realize functional finishing of the fabrics in the absence of water, and this finishing process is cost efficient, environmentally friendly, uniform, shorter treatment time and higher reactivity, and applicable to many materials and can keep the bulk properties of the treated substances.
Abstract:
A composite material includes: a base material; a structure which includes a plurality of carbon nanotubes having a bent shape with a bent portion, forms a network structure including a contact portion where the carbon nanotubes are in direct contact with each other, and is provided on a surface of the base material; and a first sizing agent that is provided at least around the contact portion, and cross-links the carbon nanotubes which are in direct contact with each other by a carbodiimide-derived structure obtained by reaction between a functional group of the carbon nanotubes and a carbodiimide group.
Abstract:
A method of making an antimicrobial textile comprising TiO2 nanoparticles is described. The TiO2 nanoparticles are immobilized by first treating a textile with a base, and then contacting with TiO2 nanoparticles in a solution of an alcohol and acid. The textile may be subsequently irradiated with UV light prior to use. The antimicrobial textile shows high effectiveness against the growth and proliferation of microorganisms transmitted within indoor environments.
Abstract:
A functionalized fiber. The functionalized fiber includes a fiber strand and silica nanoparticles at least partially encapsulating the fiber strand. The silica nanoparticles are synthesized by hydrolyzing a tetramethyl orthosilicate in hydrochloric acid to form silicic acid monomers. The silicic acid monomers are diluted in acetone and irradiated for a time that is less than 90 seconds with an energy source configured to generate microwave frequency energy to polymerize the silicic acid monomers into the silica nanoparticles.
Abstract:
This invention relates to methods, peptides, nucleic acids and cells for use in isolating and expanding human T cell populations in an antigen-specific manner for immunodiagnostic or therapeutic purposes. The invention also relates to professional antigen presenting cells derived from pluripotent human stem cells, and to customizable antigen presentation by the antigen presenting cells.
Abstract:
The present invention relates to an atopic dermatitis suppressing fiber to which a compound containing a phosphate group is fixed by chemical bonding. The present invention further relates to an atopic dermatitis suppressing fiber assembly that includes the atopic dermatitis suppressing fiber arranged to contact skin. The present invention further relates to an atopic dermatitis suppressing fiber product that includes the atopic dermatitis suppressing fiber arranged to contact skin. The present invention further relates to a method for using the atopic dermatitis suppressing fiber and a method for suppressing atopic dermatitis that include: arranging the atopic dermatitis suppressing fiber to contact skin, thereby suppressing atopic dermatitis.
Abstract:
Porphyrin-modified antimicrobial peptides as described here may be used as indicators of the presence of microbial targets. Their application may be as (for example) (1) fluorescent indicators in a microarray format, (2) fluorescence or absorbance based indicators in traditional solution based applications, or (3) reflectance based indicators for use in reagent-less detection platforms.
Abstract:
The present invention relates to an atopic dermatitis suppressing fiber to which a compound containing a phosphate group is fixed by chemical bonding. The present invention further relates to an atopic dermatitis suppressing fiber assembly that includes the atopic dermatitis suppressing fiber arranged to contact skin. The present invention further relates to an atopic dermatitis suppressing fiber product that includes the atopic dermatitis suppressing fiber arranged to contact skin. The present invention further relates to a method for using the atopic dermatitis suppressing fiber and a method for suppressing atopic dermatitis that include: arranging the atopic dermatitis suppressing fiber to contact skin, thereby suppressing atopic dermatitis.
Abstract:
A super-hydrophobic fiber of the present disclosure includes: a nano-needle fiber having a surface including needle-shaped nano structures; and a coating layer disposed on the surface including the nano structures, and containing a hydrophobic material. The fiber has no aging effect, and thus, is excellent in durability, and has such a large contact angle and such as small sliding angle that the fiber may not be wet with water. A method for fabricating the super-hydrophobic fiber includes: a preparation step of preparing a pre-treating fiber; an etching step of etching a surface and an inner portion of the pre-treating fiber to fabricate a nano-needle fiber having a surface on which needle-shaped nano structures are formed; and a coating step of forming a coating layer containing a hydrophobic material, and enables mass production and is performed by simple processes.Further, an article including the super-hydrophobic fiber is an article in which no liquid drop is absorbed, scarcely adsorbs a contaminant, needs not be dried, and thus, may be widely applied even to recreational articles.