Abstract:
The present invention refers to the technical field of thermodynamic engines, and more specifically to a heat engine that operates with gas in closed loop in differential configuration which is characterized by performing a thermodynamic cycle eight transformations or otherwise explain, it performs two thermodynamic cycles simultaneously, each with four interdependent, additional transformations, two of these transformations “isothermal” and two “adiabatic” in mass transfer in phases of adiabatic processing to provide a new performance curve no longer dependent solely on temperature but the mass transfer rate which allows the construction of machines with high yields and low thermal differentials.
Abstract:
A constant density heat exchanger and method of operating are provided. The constant density heat exchanger includes a housing extending between a first end and a second end and defining a chamber having an inlet and an outlet. A first plate is positioned at the first end of the housing and rotatable about an axis of rotation such that the first plate selectively allows a working fluid to flow into the inlet of the chamber. A second plate is positioned at the second end of the housing and rotatable about the axis of rotation such that the second plate selectively allows the working fluid to flow out of the outlet of the chamber. The first plate and the second plate are rotatable about the axis of rotation so as to hold a volume of the working fluid at constant density as a heat source imparts thermal energy thereto.
Abstract:
A system of captive oxygen fuel reactor to efficiently generate electricity from hydrocarbon fuel utilizes a flow of oxygen and a flow of hydrogen from an electrolysis unit and a flow of carbon monoxide in order to complete a fuel oxidizer reaction within a heat exchanger unit. The fuel oxidizer reaction emits a flow of steam and a flow of carbon dioxide from the heat exchanger unit re-direct them through a steam rotary piston motor unit, a carbon dioxide rotary piston motor unit, a steam carousel motor unit, a carbon dioxide carousel motor unit, and a duel drum motor unit to generate electrical current. The exhaust gases within the system are properly discharged and stored within respective storage containers for the use of the system or other possible requirements.
Abstract:
A system for energy conversion, the system including a closed cycle engine containing a volume of working fluid, the engine comprising a first chamber defining an expansion chamber and a second chamber defining a compression chamber each separated by a piston attached to a connection member of a piston assembly, and wherein the engine comprises a heater body in thermal communication with the first chamber, and further wherein the engine comprises a cold side heat exchanger in thermal communication with the second chamber, and wherein a third chamber is defined within the piston, wherein the third chamber is in selective flow communication with the first chamber, the second chamber, or both.
Abstract:
A monolithic heat exchanger body for inputting heat to a closed-cycle engine includes heating walls and heat sink, such as heat transfer regions. The heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the heating walls respectively define corresponding heating fluid pathways fluidly communicating with the inlet plenum. At least a portion of the heat sink is disposed about at least a portion of the monolithic heat exchanger body. The heat sink includes working-fluid bodies including working-fluid pathways that have a heat transfer relationship with the heating fluid pathways. Respective ones of the heat transfer regions have a heat transfer relationship with a corresponding semiannular portion of the heating fluid pathways. Respective ones of the heat transfer regions include working-fluid pathways fluidly communicating between a heat input region and a heat extraction region.
Abstract:
An engine body may include a piston body comprising a piston chamber and a regenerator body comprising a regenerator conduit. An engine body may include a working-fluid heat exchanger body comprising a plurality of working-fluid pathways fluidly communicating between the piston chamber and the regenerator conduit. Additionally, or alternatively, an engine body may include a heater body comprising a plurality of heating fluid pathways and the plurality of working-fluid pathways. The heating fluid pathways may have a heat transfer relationship with the working fluid pathways. The working-fluid pathways may fluidly communicate between the piston chamber and the regenerator conduit. The engine body may include a monolithic body defined at least in part by the piston body, the regenerator body, and the working-fluid heat exchanger body, and/or defined at least in part by the piston body, the regenerator body, and the heater body.
Abstract:
A system of captive oxygen fuel reactor to efficiently generate electricity from hydrocarbon fuel utilizes a flow of oxygen and a flow of hydrogen from an electrolysis unit and a flow of carbon monoxide in order to complete a fuel oxidizer reaction within a heat exchanger unit. The fuel oxidizer reaction emits a flow of steam and a flow of carbon dioxide from the heat exchanger unit re-direct them through a steam rotary piston motor unit, a carbon dioxide rotary piston motor unit, a steam carousel motor unit, a carbon dioxide carousel motor unit, and a duel drum motor unit to generate electrical current. The exhaust gases within the system are properly discharged and stored within respective storage containers for the use of the system or other possible requirements.
Abstract:
The inventor claims a heat engine that follows a modification of the Stirling thermodynamic heat engine cycle; the novel aspect is that the monatomic working fluid is a saturated gas at the beginning of the isothermal compression stage, and ends up a mixed-phase fluid at the end of the compression. This cycle takes advantage of the attractive intermolecular forces of the working fluid to assist in compressing the working fluid partially into a liquid, reducing the input compression work and increasing the overall heat engine efficiency.
Abstract:
The present invention refers to the technical field of thermodynamic engines, and more specifically to a heat engine that operates with gas in closed loop in differential configuration which is characterized by performing a thermodynamic cycle eight transformations or otherwise explain, it performs two thermodynamic cycles simultaneously, each with four interdependent, additional transformations, two of these transformations “isothermal” and two “adiabatic” in mass transfer in phases of adiabatic processing to provide a new performance curve no longer dependent solely on temperature but the mass transfer rate which allows the construction of machines with high yields and low thermal differentials.