Abstract:
The present invention discloses a linear compressor which can rapidly overcome load and improve compression efficiency, by synchronizing an operation frequency of a linear motor with a natural frequency of a movable member varied by the load and varying a stroke of the movable member according to the load. The linear compressor includes a fixed member having a compression space inside, a movable member linearly reciprocated in the fixed member in the axial direction, for compressing refrigerants sucked into the compression space, one or more springs installed to elastically support the movable member in the motion direction of the movable member, spring constants of which being varied by load, and a linear motor installed to be connected to the movable member, for linearly reciprocating the movable member in the axial direction, and varying a stroke of the movable member according to a predetermined refrigeration force, so that the movable member can be linearly reciprocated to reach a top dead center.
Abstract:
A piezoelectric microblower includes a vibrating plate including a piezoelectric element and arranged to be driven in a bending mode by applying a voltage of a predetermined frequency to the piezoelectric element, and a blower body arranged to fix both ends or a periphery of the vibrating plate and to define a blower chamber between the blower body and the vibrating plate, an opening being provided in a portion of the blower body facing a central portion of the vibrating plate. In a portion of the blower chamber corresponding to the central portion of the vibrating plate, a partition is provided around the opening and a resonance space is defined inside of the partition. A size of the resonance space is set such that a driving frequency of the vibrating plate and a Helmholtz resonance frequency of the resonance space correspond to each other.
Abstract:
The present invention discloses a linear compressor in which a piston is driven by a linear motor and linearly reciprocated inside a cylinder to suck, compress and discharge refrigerants. The linear compressor synchronizes an operation frequency of the linear motor with a natural frequency of the piston, considering that an elastic force of a mechanical spring and a gas spring which elastically support the piston in the motion direction is varied by load. Even if the load is varied, the linear motor is operated in the resonance state, to maximize efficiency. The linear compressor varies a stroke of the piston according to the load, thereby actively handling and rapidly overcoming the load and reducing power consumption.
Abstract:
A control for an electric motor is utilized to avoid operation in or near the resonance frequencies for the electric motor and its associated system components. The resonance frequencies can be identified experimentally at the design stage, or during operation of a component and electric motor. During start-up, shutdown or frequency adjustment, the control drives the speed through the resonance frequency zones more rapidly, and also avoids operation in or near those resonance frequencies during steady state operation. In disclosed embodiments, the electric motors are associated with fans, pumps and compressors in a refrigerant system.
Abstract:
A driving unit and control method for a reciprocating compressor for controlling a frequency of input power so that an operational frequency of the compressor follows a resonant frequency, which varies depending on a variation of the load applied to the compressor. The reciprocating compressor includes an inverter to adjust the frequency of the input power, so that the frequency of the input power is set at a value corresponding to the resonant frequency by the inverter. The resonant frequency is set in a range of 60% to 90% of the normal power frequency. The compressor further includes a controller to control the frequency of the input power so that the operational frequency of the compressor follows the resonant frequency, which varies depending on the operation of the compressor.
Abstract:
The present invention discloses a linear compressor which can rapidly overcome load and improve compression efficiency, by synchronizing an operation frequency of a linear motor with a natural frequency of a movable member varied by the load and varying a stroke of the movable member according to the load. The linear compressor includes a fixed member having a compression space inside, a movable member linearly reciprocated in the fixed member in the axial direction, for compressing refrigerants sucked into the compression space, one or more springs installed to elastically support the movable member in the motion direction of the movable member, spring constants of which being varied by load, and a linear motor installed to be connected to the movable member, for linearly reciprocating the movable member in the axial direction, and varying a stroke of the movable member according to a predetermined refrigeration force, so that the movable member can be linearly reciprocated to reach a top dead center.
Abstract:
A linear compressor that is operated at a frequency greater than the natural frequency of the spring-mass system of the compressor. Operating the compressor at such a frequency can increase the output of the compressor. In one embodiment, the linear compressor includes a cylinder block having a cylinder bore, a piston positioned within the cylinder bore, first and second springs for positioning the piston where the piston and the first and second springs comprise the spring-mass system, and an armature operably engaged with the piston to drive the piston at a frequency greater than the natural frequency of the spring-mass system. The linear compressor can also include a controller which monitors the instantaneous natural frequency of the spring-mass system and modulates the frequency of the current passing through the armature such that it exceeds the natural frequency of the spring-mass system.
Abstract:
A hermetic compressor for positive displacement is disclosed whose airtight housing is specially altered so that its natural frequencies of vibration are distributed at frequencies above 4200 Hz and whose “capacitance density” is greater than 160 W/L.
Abstract:
A piezoelectric microblower includes a vibrating plate including a piezoelectric element and arranged to be driven in a bending mode by applying a voltage of a predetermined frequency to the piezoelectric element, and a blower body arranged to fix both ends or a periphery of the vibrating plate and to define a blower chamber between the blower body and the vibrating plate, an opening being provided in a portion of the blower body facing a central portion of the vibrating plate. In a portion of the blower chamber corresponding to the central portion of the vibrating plate, a partition is provided around the opening and a resonance space is defined inside of the partition. A size of the resonance space is set such that a driving frequency of the vibrating plate and a Helmholtz resonance frequency of the resonance space correspond to each other.
Abstract:
A method and apparatus for minimizing the amplitude of mechanical vibrations of a mechanical apparatus including a linear, freely reciprocating, prime mover coupled to and driving a reciprocating mass of a driven machine in reciprocation at a driving frequency. The coupled prime mover and driven machine have a spring applying a force upon the reciprocating mass to form a resonant main system having a main system resonant frequency of reciprocation. A driving frequency range over which the driven machine operates at an acceptable efficiency of operation is determined and stored. A parameter of the operation of the mechanical apparatus, such as the amplitude of vibrations or an operating temperature, is sensed and the prime mover is driven in response to the sensed parameter at a driving frequency that is offset from the main system resonant frequency of reciprocation, is within the driving frequency range of acceptable efficiency of operation and reduces or minimizes the amplitude of mechanical vibration of the mechanical apparatus under existing operating conditions.