Abstract:
A hybrid torque tube for a brake assembly may comprise a tube portion having a centerline axis, and a conical back-leg portion extending from the tube portion. A stator spline may be formed on a radially outward surface of the tube portion. A foot may be formed on a radially inward surface of the tube portion. The tube portion is formed using a first manufacturing process and at least one of the conical back-leg, stator spline, or foot is formed using additive manufacturing.
Abstract:
A brake stack comprises a stator having an annular, inner periphery section disposed substantially along a first radial plane extending normal to an axis of a wheel, and a stator side wall having a first stator contact surface, the first stator contact surface including a sloped portion which deviates away from the radial plane defined by the annular, inner periphery section. The brake stack further comprises a rotor having an annular, outer periphery section disposed substantially along a second radial plane extending normal to the axis of the wheel, and a rotor side wall having a first rotor contact surface shaped complementary to the first stator contact surface, wherein the stator and the rotor are interleaved.A brake disk may comprise a first radius of a friction surface at a first axial position and a second radius of the friction surface at a second axial position, where the first radius is different than the second radius. The brake disk may further comprise an axis of rotation orthogonal to a plane of rotation, wherein the brake disk rotates substantially in the plane of rotation, and wherein the friction surface is at an acute angle to the plane of rotation.An aircraft brake system comprises an aircraft rotor oriented orthogonally with respect to an axis of rotation and an aircraft stator configured to nest with the aircraft rotor, where a stator friction surface is non-orthogonal to the axis of rotation. The aircraft brake system may further comprise a pressure plate and an end plate configured to nest with the aircraft rotor and/or aircraft stator, and an actuator may be utilized to effectuate braking of the aircraft braking system.
Abstract:
An electromagnetic brake (10) including a plurality of elastic members (25) which are arranged between an engagement surface of a brake pad (13) and an engagement surface of a hub (12) symmetrically about a center of rotation of the shaft (11). The biasing directions of the plurality of elastic members are in a rotational direction of the shaft.
Abstract:
A brake hub assembly couplable to the axle of a vehicle includes a brake hub defining a central axis and having a set of lugs, a brake disk in engagement with the hub and axially slideable over the set of lugs, and a stopping plate formed separately from the hub and fastened to the set of lugs. A first portion of the stopping plate extends between adjacent first and second lugs in the set of lugs. The brake hub assembly also includes an axial preload spring coupled to the hub for clamping the brake disk against the stopping plate. A first portion of the axial preload spring extending between the first and second lugs biases the brake disk toward the first portion of the stopping plate.
Abstract:
Described is a brake disc comprising: an annular monolithic band (1) having a thickness (S) forming two flat parallel surfaces (2, 3) defining the contact zones with friction members for the brake and delimited by an outer edge (4) and an inner edge (5); the annular band (1) having the inner edge (5) equipped with a plurality of protrusions or ribs (6) having preferably radial directions;—an element (7) for supporting the annular band (1) joined to the protrusions or ribs (6) of the inner edge (5) of the annular band (1); the supporting element (7) being configured to be keyed centrally to the hub of a rotary element; the brake disc (100) at least one contact surface (2, 3) of the annular band (1) equipped with a first plurality of recesses (9) made at least along the outer edge (4) of the annular band (1); each first recess (9) being configured so as to define, in the area involved, a reduction of the thickness (S) of the annular band (1) comprising at least one stretch of the outer edge (4) of the annular band (1) on the corresponding contact surface (2, 3).
Abstract:
A disc brake for a vehicle axle includes a brake rotor, a brake caliper that straddles the brake rotor, a wheel hub, and a plurality of brake rotor mounting elements that couple the brake rotor to the wheel hub. The brake rotor includes a friction ring portion and a rotor mounting portion radially inward of the friction ring portion. The rotor mounting portion is formed on a radially inner circumference of the brake rotor, and includes a plurality of splines extending radially inward toward an axis of rotation of the brake rotor and a radially inward extending axial motion limiting feature disposed between each adjacent pair of the plurality of splines.
Abstract:
A brake hub assembly couplable to the axle of a vehicle includes a brake hub defining a central axis and having a set of lugs, a brake disk in engagement with the hub and axially slideable over the set of lugs, and a stopping plate formed separately from the hub and fastened to the set of lugs. A first portion of the stopping plate extends between adjacent first and second lugs in the set of lugs. The brake hub assembly also includes an axial preload spring coupled to the hub for clamping the brake disk against the stopping plate. A first portion of the axial preload spring extending between the first and second lugs biases the brake disk toward the first portion of the stopping plate.
Abstract:
An electromagnetic brake (10) including a plurality of elastic members (25) which are arranged between an engagement surface of a brake pad (13) and an engagement surface of a hub (12) symmetrically about a center of rotation of the shaft (11). The biasing directions of the plurality of elastic members are in a rotational direction of the shaft.
Abstract:
Systems and methods for whirl mitigation in an aircraft braking system are provided. For example, an apparatus is provided comprising a brake disk stack including a torque tube having a first axial end and a second axial end, a back leg near a first axial end of the torque tube, and a circumferentially disposed spline extending from the back leg towards the second axial end of the torque tube.
Abstract:
A floating type brake disc is provided which is capable of limiting the heat escape from a rotor to a hub to the extent possible and which can be made smaller in weight. In a plurality of circumferential positions of the hub, there are formed pin-receiving portions in a manner to enclose a connecting pin from three directions of a radially inward, one of circumferentially both sides and a radially outward of the brake disc. A tongue-shaped pin-receiving portion is formed on each of a plurality of inner circumferential positions of the rotor 1 so as to be elongated radially inward to pinch the connecting pin between the tongue-shaped pin-receiving portion and the pin-receiving portion that is formed in the hub.