Abstract:
A device for damping the movement of a movably mounted component includes a first, mechanically acting braking device with at least one friction pair, wherein, in order to generate a braking force, a driven friction surface can be rotated about an axis of the first braking device relative to a secured friction surface resting thereon, and a second braking device which is coupled to the first braking device, wherein the friction surfaces of the friction pair, or of at least one of the friction pairs, are pressed against each other in response to a braking force exerted by the second braking device. The second braking device has at least one driven damper surface that can be rotated about an axis of the second braking device and cooperates with at least one secured damper surface to enclose at least one gap in which a viscous damping medium is present that causes a braking force of the second braking device when the at least one driven damper surface is rotated with respect to the at least one secured damper surface.
Abstract:
A locking device for an adjustable steering column for a motor vehicle may include an actuating shaft that is mounted such that it can be rotated about a rotational axis, that is connected to an operative element of a clamping device, and that is coupled to a rotor of a rotational damper. The rotor may be mounted rotatably in a housing and may be capable of being driven rotationally about a rotor axis by the actuating shaft. A rotational movement of the rotor may be damped in at least one rotational direction. The rotor may have at least one blade that projects radially with regard to the rotor axis and that has a contact face that makes frictional contact with a contact track on an inner face of the housing. Such a locking device has an improved rotational damper, is less complicated to manufacture, and has high acceptance in automotive engineering.
Abstract:
A vehicle interior component with an improved torque hinge is provided. The vehicle interior component may comprise a base and a cover configured to move relative to the base. The torque hinge may be coupled to the base and the cover and configured to hold the cover in any position relative to the base. The torque hinge may comprise a bushing, a brake, a clamp and a fastener configured to provide a clamping force between the clamp and brake. The bushing may be configured to move with the cover as the cover moves relative to the base to provide a frictional force against the brake. The clamp may be manufactured by an extrusion process. The clamp may comprise a curved portion and first and second extension portions extending from the curved portion. The first and second extension portions of the clamp may be substantially parallel.
Abstract:
A device for damping the movement of a movably mounted component comprises a braking device which has a driven damper surface that cooperates with a secured damper surface to enclose a gap in which a viscous damping medium is present that causes a braking force of the braking device when the driven damper surface is rotated with respect to the secured damper surface, the braking force depending on the rotational speed of the driven damper surface. The device also has an additional braking device and a coupling. In the closed state of the coupling, at least one additional damper surface of the additional braking device driven by the movement of the component about an axis of the auxiliary braking device is rotated relative to at least one secured additional damper surface about the axis of the additional braking device, the additional braking device exerting an additional braking force. In the opened state of the coupling, the additional braking device is inactive. The coupling is activated by the braking force exerted by the braking device.
Abstract:
Provided is a damper configured so that a compact pedal unit can be obtained using the damper and so that the damper can be easily retrofitted to a pedal unit. A damper (1) comprises elements such as: a pair of cams (slide cam (4) and stationary cam (5)) which rotate relative to each other about the axis (O1) to cause the sloped cam surfaces (4132, 5211) thereof to make sliding contact with each other; a coiled spring (3) which presses the sloped cam surface (4132) of the slide cam (4) against the sloped cam surface (5211) of the stationary cam (5); a case (2); and a resin roller (8) which is fitted in a rotatable manner on the shaft (7A). The rotational motion of the slide cam (4) about the axis (O1) is restrained by the case (2), and as a result, the slide cam (4) rotates about the axis (O1) relative to the stationary cam (5) in association with the rotation of the case (2) about O1.
Abstract:
A steering column for a motor vehicle including a steering spindle bearing unit for rotatably supporting a steering spindle of the steering column and a bracket unit for securing the steering column on the motor vehicle. The steering spindle bearing unit is bearing supported by a securement device on at least one bracket part of the bracket unit, wherein the position of the steering spindle bearing unit relative to the bracket unit is secured in position in a closed position of the securement device and, in an open position of the securement device, is displaceable. The securement device includes an operating lever swivellable about a lever swivel axis, by which the operating lever is displaceable between the closed position and the open position. The steering column includes at least one damping element for damping the swivel movement of the operating lever about the lever swivel axis.
Abstract:
A device for damping the movement of a movably mounted component includes a first, mechanically acting braking device with at least one friction pair, wherein, in order to generate a braking force, a driven friction surface can be rotated about an axis of the first braking device relative to a secured friction surface resting thereon, and a second braking device which is coupled to the first braking device, wherein the friction surfaces of the friction pair, or of at least one of the friction pairs, are pressed against each other in response to a braking force exerted by the second braking device. The second braking device has at least one driven damper surface that can be rotated about an axis of the second braking device and cooperates with at least one secured damper surface to enclose at least one gap in which a viscous damping medium is present that causes a braking force of the second braking device when the at least one driven damper surface is rotated with respect to the at least one secured damper surface.
Abstract:
A traction mechanism drive, in particular for an internal combustion engine, including a vibration damper (1) having a base part (2) and a rotary part (3) that can be rotated to a limited extent relative to the base part against the effect of an energy store (6). Between the base part (2) and the rotary part (3), a friction unit (8) having a friction ring (9) formed of a support element (15) and a sliding element (16) arranged radially outside of the support element (15) for forming a friction contact in relation to a friction surface (10) is effective. The friction ring (9) is produced in one piece from the support element (15) and the sliding element (16), and the support element (15) and the sliding element (16) are cast on top of each other. A positive fit (17) is effective between said support element and sliding element in the circumferential direction.
Abstract:
A pedal device (1) for an automobile includes a supporting frame (2); an accelerator pedal arm (3) made of a rigid metal and supported by the supporting frame (2) in such a manner as to be rotatable about an axis A in directions R; a spring means (4) for rotatively urging the accelerator pedal arm (3) toward an initial position of its rotation; a damper (5) for imparting a resistance force to the rotation in the directions R of the accelerator pedal arm (3); and a stopper for stopping the rotation of the accelerator pedal arm (3) at the initial position of its rotation.
Abstract:
A rotary damper is adapted to exert braking force to an upswung door, a toilet lid or the like when the door is closed and dampen the impact produced by the closing door by a damping force far greater than the one obtained by a conventional rotary damper using viscous shearing resistance. The rotary damper can also make the door open by a force far smaller than a conventional rotary damper. A movable shaft is rotatably housed in a casing and has a cylindrical shaft section including an arcuate non-resilient section extending from a peripheral edge thereof to an axial base line close to the other free peripheral edge thereof and an eccentric resilient section extending from the axial base line to the other free peripheral edge thereof with its eccentricity increasing as a function of the distance from the base line relative to the radius of curvature of the inner peripheral surface so as resiliently abut the inner peripheral surface. The frictional force between the eccentric rest section and the inner peripheral surface increases when the movable shaft is driven to rotate to close the door to which it is fitted but falls remarkably when the movable shaft is driven to rotate in the opposite sense to open the door.