Abstract:
An atomizer of the invention includes a mixing chamber, spray fluid flow passages supplying a spray fluid to the mixing chamber, a spray medium flow passage supplying a spray medium to the mixing chamber, outlet holes spraying a fluid mixture of the spray fluid and the spray medium, and fluid mixture flow passages connecting the mixing chamber and the outlet holes to each other. The fluid mixture flowing through each of the fluid mixture flow passages joins with each other at a joining section and is sprayed from the outlet hole. The mixing chamber includes a middle ejection hole spraying the spray fluid to the mixing chamber. The middle ejection hole is arranged at a joining section of the spray fluid flow passages. The spray fluid flowing through the spray fluid flow passages joins with each other at the joining section and is sprayed from the middle ejection hole.
Abstract:
The present invention involves providing a viscous fluid in a particular format and implementations thereof. In particular, a viscous slave fluid is provided in a particular format, wherein the particular format can be an end result or an intermediate result for the viscous fluid. In the case of an intermediate result, the viscous fluid in the second format may be further processed to a third format. Implementations or applications include supercharged fuel injection systems, methods, and apparatuses for internal combustion, lean-burn oil pre-mixing systems, methods, and apparatuses for liquid fuel combustion, and medical or biomedical devices, systems, and methods.
Abstract:
A two-substance nozzle with a nozzle housing, the nozzle housing comprising at least one fluid inlet for fluid that is to be atomized, a second fluid inlet for gaseous fluid, a mixing chamber, a nozzle outlet opening and an annular gap opening surrounding the nozzle outlet opening, whereby, within the nozzle housing, means are provided for generating a film of fluid that is to be atomized on a wall in the mixing chamber, and inlet openings are provided for injecting gaseous fluid into the mixing chamber. The inlet openings and the mixing chamber are aligned and configured in a manner so as to inject the gaseous fluid essentially parallel to the wall in the mixing chamber and to move the stream of gaseous fluid within the mixing chamber essentially parallel past the wall.
Abstract:
There is provided a fuel oil atomizer comprised of an elongated outer member, an elongated inner member and an atomizing head. The inner member is a fuel supply conduit which coaxially received within the central opening of the outer member defining therebetween a generally annular atomizing fluid supply conduit. The atomizing head includes a fuel chamber, an atomizing fluid chamber and a mixing chamber. The fuel supply conduit communicates with the fuel chamber. The atomizing fluid supply conduit communicates with the atomizing fluid chamber. The fuel chamber has a first end and a second end. The atomizing fluid chamber is circumambient to the first end of the fuel chamber and the fuel chamber has a portion that extends axially from the atomizing fluid chamber. The mixing chamber is circumambient to the second end of the fuel chamber.
Abstract:
A burner for liquid fuel comprises a mixture chamber for producing a liquid fuel air mixture. The mixture chamber has a heating element, an air inlet for receiving air, the air inlet being configured so as to facilitate air flow over at least a part of the heating element, and a liquid fuel inlet. An atomizer is mounted in a path of flow of the liquid fuel air mixture formed by the mixture chamber. A combustion chamber for combusting the liquid fuel air mixture is provided. The combustion chamber has a flame holder, an ignition source located proximal the flame holder, and a combustion zone located downstream of the flame holder.
Abstract:
A high efficiency liquid fuel atomizer includes an elongated generally tubular member defining a liquid fuel pre-atomization chamber. The tubular member has an outer wall that extends around the chamber, an upstream end adapted for connection to a source of liquid fuel and a downstream fuel delivery outlet. The atomizer also includes a larger diameter outer tube that is concentric to the tubular member and defines a generally annular pressurized atomizing fluid supply conduit disposed in surrounding relationship relative to the chamber. The outer tube has an inlet adapted for connection to a source of pressurized atomizing fluid and a downstream pressurized atomizing fluid delivery outlet. One or more orifices are provided in the outer wall of the tubular member so as to intercommunicate the chamber and the annular conduit to permit pressurized atomizing fluid to enter the chamber and at least partially atomize the fluid fuel therein. Also disclosed is an atomizing tip which includes a novel y-shaped for further atomizing the liquid fuel.
Abstract:
A high efficiency method for atomizing a liquid fuel. A liquid fuel is caused to flow into and through a pre-atomization chamber. A first portion of a pressurized atomizing fluid is introduced into the liquid fuel flowing through the chamber so as to at least partially atomize the fuel and provide a first admixture containing atomized fuel and atomizing fluid. The first admixture is delivered from the chamber and caused to flow into and through a first elongated port in an atomizing tip connected to the chamber. A second portion of pressurized atomizing fluid is directed into and caused to flow through a second elongated port in the tip. The first admixture from the first port is introduced into the second port and caused to become intimately intermixed with the second portion of pressurized atomizing fluid so as to further atomize the fuel and provide a second admixture comprising atomized fuel and atomizing fluid. The second admixture is then discharged from the tip as a fully atomized fuel and fluid mixture.
Abstract:
An atomizer for atomizing a liquid has a gas chamber adapted to be connected to a supply of gas and a liquid chamber adapted to be connected to a source of liquid. A mixing tube extends from the gas chamber in a downstream direction, and atomizing gas flows through the tube at subsonic speed. A liquid conduit fluidly connects the liquid chamber with the mixing tube so that liquid from the conduit can be entrained in the gas flow for discharging a mixture of gas and partially atomized liquid from the tube. The mixture then flows through an exit gap to the exterior of the housing. The exit gap has several successive shear steps which contact the mixture as it flows through the gap to thereby substantially fully atomize the liquid as it is being discharged from the atomizer. The atomizer permits variations in the liquid flow rate and therewith variations in the rate at which atomized liquid is discharged from the atomizer by modulating the rate at which the liquid is entrained in the gas streams while maintaining the gas stream flow rate (and pressure) substantially constant.
Abstract:
A burner apparatus for burning petroleum products during well testing. The apparatus comprises a plurality of burner nozzles for mixing air, oil or other flammable hydrocarbon, and in some cases steam, and discharges the mixture for burning. Each module may have a plurality of burner nozzles, and a plurality of such modules may be connected together. Each burner nozzle has a body with an air inlet and a fluid inlet, a nozzle insert disposed in the body and having an air port in communication with the air inlet and a fluid port in communication with the fluid inlet. Sealing is provided between the nozzle insert and the body. The body may also have a steam inlet, and the nozzle insert may also have a steam port in communication with the steam inlet, for directing steam into the apparatus to increase the mixing energy and temperature, thereby facilitating atomization. A single pilot and igniter system may be used for substantially simultaneously igniting the air and fluid mixture discharged from the nozzle inserts.
Abstract:
A burner apparatus for burning petroleum products during well testing. The apparatus comprises a plurality of burner nozzles for mixing air, oil or other flammable hydrocarbon, and in some cases steam, and discharges the mixture for burning. Each module may have a plurality of burner nozzles, and a plurality of such modules may be connected together. Each burner nozzle has a body with an air inlet and a fluid inlet, a nozzle insert disposed in the body and having an air port in communication with the air inlet and a fluid port in communication with the fluid inlet. Sealing is provided between the nozzle insert and the body. The body may also have a steam inlet, and the nozzle insert may also have a steam port in communication with the steam inlet, for directing steam into the apparatus to increase the mixing energy and temperature, thereby facilitating atomization. A single pilot and igniter system may be used for substantially simultaneously igniting the air and fluid mixture discharged from the nozzle inserts.