Abstract:
A multi-functional retrofit cover plate assembly and method for an electric water heater to provide interconnection with an alternative energy system to heat water in a water holding tank of the electric water heater. The cover plate is adapted for replacement connection over a bottom access opening formed in an outer casing of the electric water heater which permits access to a bottom resistive heating element and electrical connections. The retrofit cover plate is shaped to define an internal dedicated compartment. A dual resistive heating element is provided for replacement of the bottom resistive heating element. An electronic switch unit is further provided and it has a power cut-off switch for connection to an alternative supply voltage. A temperature sensor is provided for mounting against an outer surface of the tank of the water heater to feed actual temperature signals of water temperature within the tank, in a lower region thereof, to the electronic switch unit which operates the power cut-off switch upon a predetermined temperature having been attained in the tank of the water heater. The retrofit cover plate and the assembly also make it possible to covert the water heater to a high temperature water heater or to adapt the electric water heater to a thermal fluid heat source.
Abstract:
A waste-heat recovery system includes a waste-heat-recovery heat a tank, a circulation circuit, a circulation pump, and a control device that is configured to obtain the temperature of the heat medium flowing through a heat medium outlet piping of the circulation circuit and the temperature of the water stored in the tank. The control device stops the circulation pump or reduces the rotational frequency thereof in a case where the temperature of the heat medium flowing through the heat medium outlet piping is lower, or lower by a predetermined temperature or more, than the temperature of the water.
Abstract:
The purpose of the present invention is: to enable hot water at a required temperature to be supplied, even in cases when compressor load factor is low; to suppress heat dissipation from a waste-heat recovery device; and to improve waste-heat recovery rate. A waste-heat recovery system in an oil-cooled gas compressor is provided with: a compressor main body (3); an oil separator (6); gas piping (8) which supplies, to a demanded destination compressed gas separated from oil by the oil separator; oil piping (7) which returns, to the compressor main body, the oil separated by the oil separator; and a waste-heat-recovery heat exchanger (10) which recovers heat from the compressed gas and/or the oil. The waste-heat recovery system is also provided with: a hot-water storage tank (19); circulation circuits (17, 18) in which a heat medium is made to circulate between the waste-heat recovery heat exchanger and the hot-water storage tank; a circulation pump (22) provided to these circulation circuits; and a control device (32) which, in cases when the temperature of the oil or the compressed gas subjected to heat exchange in the waste-heat-recovery heat exchanger is equal to or less than the temperature of the hot water in the hot-water storage tank, stops the circulation pump or reduces the rotational frequency of the circulation pump.
Abstract:
The purpose of the present invention is: to enable hot water at a required temperature to be supplied, even in cases when compressor load factor is low; to suppress heat dissipation from a waste-heat recovery device; and to improve waste-heat recovery rate. A waste-heat recovery system in an oil-cooled gas compressor is provided with: a compressor main body (3); an oil separator (6); gas piping (8) which supplies, to a demanded destination compressed gas separated from oil by the oil separator; oil piping (7) which returns, to the compressor main body, the oil separated by the oil separator; and a waste-heat-recovery heat exchanger (10) which recovers heat from the compressed gas and/or the oil. The waste-heat recovery system is also provided with: a hot-water storage tank (19); circulation circuits (17, 18) in which a heat medium is made to circulate between the waste-heat recovery heat exchanger and the hot-water storage tank; a circulation pump (22) provided to these circulation circuits; and a control device (32) which, in cases when the temperature of the oil or the compressed gas subjected to heat exchange in the waste-heat-recovery heat exchanger is equal to or less than the temperature of the hot water in the hot-water storage tank, stops the circulation pump or reduces the rotational frequency of the circulation pump.
Abstract:
A facility for producing a hot liquid comprising a primary exchanger extending into a vessel, said primary exchanger being formed by a substantially cylindrical inner wall and a substantially outer wall, at least one of which having at least two circular ribs.
Abstract:
A device adapted to accumulate a thermally treated includes: a containment chamber of the thermally treated fluid (1), at least one separator (4) arranged with a substantially vertical development in the containment chamber, at least one separator being adapted to divide the chamber in at least two parts, and to leave openings at the opposite upper (6) and lower (7) end of the chamber, by means of which the fluid can pass in order to determine a rotatory circulation of the fluid in the cross direction in the chamber.
Abstract:
An apparatus and method for heating a defined space uses an engine to generate the heat required. The heating system includes a tank for heating liquid. A liquid coolant system has conduits which extend between the engine and the tank. A first respective conduit supplies coolant liquid from the tank to the engine and a second respective conduit supplies liquid which has been drawn through the engine and heated to the tank. An exhaust transfer system has an exhaust conduit which extends from the engine to the tank. A heating element is located in the tank to provide a supplemental heat source. Heating conduits extend from the tank to the space to be heated. The liquid coolant system, the exhaust transfer system and the heating element cooperate to heat the liquid in the tank quickly, thereby minimizing run time of the engine and increasing the efficiency of the heating system.
Abstract:
An object is to provide a heating tank capable of highly efficiently heating a target to be heated and having high safety and reliability, and a hot water storage tank. The heating tank in which the target to be heated is stored and which heats the target to be heated by a circulated refrigerant of a heat pump, for example, the hot water storage tank which is heated by the circulated refrigerant of the heat pump to produce hot water in the tank includes a heat exchanger in which a wall surface of a tank main body is partially secured to peripheral edge portions and inner portions of two metal plates and in which non-secured portions swell to constitute a refrigerant passage closed except an inlet and an outlet. A thickness dimension of one metal plate is set to be larger than that of the other metal plate, and the one metal plate is arranged on the inner side of the other metal plate.
Abstract:
A self-powered pump for heated liquid is provided. The pump includes an airtight container for containing the heated liquid. A heated liquid inlet pipe extends upwardly into the container such that its end is within the container. A heated liquid outlet is lower than the end of the inlet pipe. A breathing pipe extends upwardly into the container such that its end is within the container and is higher than both of the outlet and the end of the inlet pipe but lower than an interior side of the container top. An opposite end of the breathing pipe is outside the container, lower than the container base, and is received by an open container such that the opposite end can become submerged in heated liquid accumulated within the open container during pump operation. A fluid or liquid heating system incorporating the self-powered pump may operate without external power for the pump.
Abstract:
A novel water heat exchanger with a helix coil incorporated into a stainless steel elongated variable diameter cylindrical housing. A buffer tank is incorporated within the lumen of the helix coil. In one embodiment, the heat exchanger utilizes a radial direct-firing burner and a blower-driven hot flue gas to heat water for domestic and commercial use. In one embodiment, at least a rope seal is disposed between adjacent coil loops of a portion of the helix coil for enhancing heat transfer to the helix coil. In one embodiment, solar and electric heating systems are combined with the helix coil heat exchanger and disposed within the buffer tank to provide supplemental heating. In another embodiment, the heat exchanger further comprises a Stirling engine comprised of a free piston having hot and cold ends that is disposed within the cavity taken up the buffer tank, wherein the hot end receives heat from the burner and the cold end is cooled by the incoming cold water line to form an electric power generator.