摘要:
To recover water from a cooling tower exhaust an air entry is provided adjacent thereto which feeds into a cooling heat exchanger. The cooling heat exchanger reduces a temperature of the wet air entering the air entry, causing condensation of water. This condensed water is captured and discharged from the system separate from dry air. A pre-cooler loop can be provided with a pre-cooler heat exchanger upstream of the cooling heat exchanger and fed by a cool line with a cold working fluid drawing heat out of the wet air. The pre-cooler heat exchanger can have its working fluid re-cooled in a second heat exchanger which exchanges heat with the cooler dry air downstream of the cooling heat exchanger. The cooling heat exchanger has a cold fluid passing therethrough which is cooled by a refrigeration system or some other cold fluid source.
摘要:
A system and method for providing dry cooling of a source liquid, having a plurality of heat exchangers which depolymerize and polymerize a polymer. Specifically, the depolymerization process is endothermic and draws heat from a source liquid in a first heat exchanger, and the polymerization process is exothermic and expels heat from a second heat exchanger. Additional heat exchangers and holding tanks may be incorporated in the system and method. In some embodiments the system further provides additional cooling of the polymer prior to depolymerization using cooler night ambient air.
摘要:
In one embodiment, a cooling system may include a thermosyphon cooler that cools a cooling fluid through dry cooling and a cooling tower that cools a cooling fluid through evaporative cooling. The thermosyphon cooler may use natural convection to circulate a refrigerant between a shell and tube evaporator and an air cooled condenser. The thermosyphon cooler may be located in the cooling system upstream of, and in series with, the cooling tower, and may be operated when the thermosyphon cooler is more economically and/or resource efficient to operate than the cooling tower. According to certain embodiments, factors, such as the ambient temperature, the cost of electricity, and the cost of water, among others, may be used to determine whether to operate the thermosyphon cooler, the cooling tower, or both.
摘要:
Cooling systems for providing cooled air to electronic equipment are described. The systems can include large storage tanks or waste treatment systems to improve the efficiency of the plant and reduce impact on the environment.
摘要:
An immersion cooling tank includes: a tank comprised of a base wall, and perimeter walls, and having a lower tank volume in which a liquid can be maintained and heated to a boiling point to generate a rising plume of vapor; a rack structure within the tank volume that supports insertion of multiple, heat dissipating electronic devices in a side-by-side vertical configuration; and a condenser configured as a plurality of individually rotatable condenser sub-units, with each condenser sub-unit located above a vertical space that extends vertically from the lower tank volume and within which an electronic device can be inserted. Each individual condenser sub-unit can be opened independent of the other sub-units and each other condenser sub-unit can remain in a closed position while a first condenser sub-unit is opened to allow access to a first vertical space and any existing electrical device contained therein below the first condenser sub-unit.
摘要:
A system includes an intercooler configured to receive an airflow from a first compressor, to transfer heat from the airflow to a working fluid, and to provide the airflow to a second compressor. The system also includes an evaporative chiller configured to receive the working fluid from the intercooler, to chill the working fluid via evaporative cooling within an ambient air environment, and to provide the working fluid to the intercooler. In addition, the system includes a desiccant system configured to reduce a humidity of ambient air within the evaporative chiller.
摘要:
The invention is a power plant cooling system comprising a direct contact condenser (11), a cooling tower (12) with at least one heat dissipating unit (13), a pipeline (15) and a cooling water pump (16) suitable for circulating cooling water between the direct contact condenser (11) and the heat dissipating unit (13), as well as a de-aerating structural component (14) defining a de-aerating space adjoining to the top of a flow space of the heat dissipating unit (13). The inventive cooling system comprises a means suitable for maintaining a vacuum in the de-aerating space. The invention also relates to a method for operating the cooling system.
摘要:
The invention is a hybrid cooling system for condensing the exhaust steam of a steam turbine (10), which cooling system comprises a dry cooling circuit (11), a dry air-cooled unit (12) performing heat dissipation of cooling water flowing therein, and a wet cooling circuit (14) and a wet cooled unit (15) performing heat dissipation of the cooling water flowing therein. According to the invention, the cooling water flowing in the dry cooling circuit (11) is separated from the cooling water flowing in the wet cooling circuit (14), and the dry and wet cooling circuits (11, 14) are connected to a common condenser.
摘要:
A cooling system for solar thermal Rankine cycle is provided. The cooling system includes a fluid reservoir filled with a cooling fluid. Moreover, at least one condenser with a reservoir side and a steam side, which is in thermal connection to the solar steam turbine to cool and condense the steam from the solar steam turbine, is provided. A respective solar steam turbine including a cooling system as well as a method for cooling and condensing steam from a solar steam turbine are also provided.
摘要:
A process for cooling down a hot flue gas stream comprising water vapour and carbon dioxide, the process including: (a) heat exchange between the hot flue gas stream and a cooling water stream so that the hot flue gas stream is cooled to a cooled down gas stream at a temperature at which at least part of the water vapour therein has condensed and the cooling water stream increases in temperature; (b) combining the condensed water vapour and the cooling water stream to produce a combined water stream; (c) separation of the cooled down gas stream from the combined water stream; (d) cooling the combined water stream by contact with air from the atmosphere and by evaporation of a portion of the combined water stream; (e) using at least part of any non-evaporated and cooled water of the combined water stream as at least part of the cooling water stream for cooling the hot flue gas stream in step (a); and (f) storing any non-evaporated and cooled water of the combined water stream that is not used in step (e) and using the stored water later as at least part of the cooling water stream in step (a).