摘要:
An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. The delivered heat which may be used for processes including power generation and cogeneration. In one application, the energy storage system provides higher-temperature heat to a conventional lower-temperature heat source to boost the temperature of a thermal power cycle working fluid to a turbine, thereby increasing efficiency of the power cycle.
摘要:
An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. The delivered heat which may be used for processes including power generation and cogeneration. In one application, the energy storage system provides higher-temperature heat to a conventional lower-temperature heat source to boost the temperature of a thermal power cycle working fluid to a turbine, thereby increasing efficiency of the power cycle.
摘要:
The present application pertains in some embodiments to a thermal storage system. The system may include, for example, a warm thermal storage region; a cold thermal storage region; and a physical divider. The warm thermal storage region may include at least two liquid phases. The cold thermal storage region may include at least one liquid phase. The physical divider substantially separates the warm thermal storage region from the cold thermal storage region.
摘要:
The “heat storage material storage container” comprises “a main body having a longitudinal direction and including a plurality of flow channels therein, the flow channels extending parallel to each other in the longitudinal direction and separated from each other by porous walls” and “a heat storage material contained in only one or some of the plurality of flow channels.” The plurality of flow channels include “a plurality of first flow channels each having an open end on a first side in the longitudinal direction and a closed end on a second side in the longitudinal direction” and “a plurality of second flow channels each having open ends on both the first side and the second side in the longitudinal direction.” The heat storage material is contained in only the first flow channels.
摘要:
A compressed air energy storage unit includes an electrical input and output circuit, a compressor and expansion device and an artificially created compressed air reservoir. The compressor and expansion device includes a piston pump having pistons formed of an electrically and thermally conductive liquid, e.g. galinstan, and is switchable between pumping operation and generator operation. A method for the production of a compressed air energy storage unit of this type includes manufacturing at least some components by 3D printing.
摘要:
A thermal energy storage apparatus adapted to receive heat source input for the development and substantially continuous supply of thermal energy to a Stirling engine for the transfer of said thermal energy to electrical and/or mechanical energy, even during periods when heat source input is intermittent or unavailable for a period of time. The apparatus includes a series of elongate canisters containing silicon metalloid and made of refractory material. The canisters are interlaced with a thermal energy absorbing material in communication with a wicking material to which the Stirling engine is in communication.
摘要:
An energy storage system (TES) converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. The delivered heat which may be used for processes including power generation and cogeneration. In one application, the energy storage system provides higher-temperature heat to a steam cracking furnace system for converting a hydrocarbon feedstock into cracked gas, thereby increasing the efficiency of the temperature control.
摘要:
An energy storage system (TES) converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. The delivered heat which may be used for processes including power generation and cogeneration. In one application, the energy storage system provides higher-temperature heat to a steam cracking furnace system for converting a hydrocarbon feedstock into cracked gas, thereby increasing the efficiency of the temperature control.
摘要:
Methods and systems for energy storage and management are provided. In various embodiments, heat pumps, heat engines and pumped heat energy storage systems and methods of operating the same are provided. In some embodiments, methods include controlling thermal properties of a working fluid by virtue of the timing of the operation of cylinder valves. Methods and systems for controlling mass flow rates and charging and discharging power independent of working fluid temperature and system state-of-charge are also provided.
摘要:
An energy storage system (TES)converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. The delivered heat which may be used for processes including power generation and cogeneration. In one application, the energy storage system provides higher-temperature heat to a steam cracking furnace system for converting a hydrocarbon feedstock into cracked gas, thereby increasing the efficiency of the temperature control.