摘要:
A torque command value and an acceleration detection value are accumulated when a driven portion is subjected to acceleration/deceleration driving, and, from a ratio between the two, inertia of a movable portion is calculated. By executing the acceleration/deceleration driving about a position where influence of gravity torque is zero, the influence of the gravity torque included in the torque command value before and after the center position is offset, whereby inertia can be estimated correctly even with a machine structure in which the influence of gravity differs depending on the position of the motor.
摘要:
A method and system for identifying a moment of inertia (MOI) of a work piece includes coupling the work piece to a manipulator assembly such as a 6-axis robotic arm or 3-axis gimbal. The manipulator assembly includes a force/torque sensor and a motion feedback sensor. The manipulator assembly moves the work piece with three-dimensional motion. Force, torque and movement measurements are made as the work piece moves. The MOI is identified according to the force and torque measurements and rotational accelerations derived from the measured movement. The measurements may be used to identify the products of inertia (POI) and center of mass of the work piece.
摘要:
A probe balancing device and system is provided for configuring and balancing a probe assembly of a coordinate measurement machine for accurate measurement. It can aid in the correction of an out of balance probe assembly and in meeting a vendor's specified torque and weight specification. A method for configuring and balancing such a probe assembly is also provided. The tool or system may be used either to balance an existing probe assembly or to balance a new probe assembly. Balancing may be accomplished by adding weights to various radial locations of the probe assembly or by changing probe assembly parts and/or component material until a leveling element is centered. A kit may be provided including the tool or system and one or more of a weight scale, a weigh scale stand, one or more weights, or a storage tray for the one or more weights.
摘要:
A system for measuring a mass property of an object is provided. The system includes a first shaft having a first end and a second end and a table disposed in a first plane and coupled to the first shaft at a predetermined angle to support the object. The table is configured to pivot about an axis perpendicular to the first plane between at least a first pivot position and a second pivot position. The system further includes a torque sensor configured to collect a first torque measurement on the first shaft when the table is in the first pivot position and a second torque measurement on the first shaft when the table in the second pivot position.
摘要:
A gravity center neutral eccentric is provided. The gravity-center-neutral eccentric includes an axis of rotation and an eccentric region, wherein the center of mass of the eccentric lies on the axis of rotation. In another embodiment, a center of mass of the eccentric region also lies on the axis of rotation. A measurement device including a gravity center neutral eccentric is also provided.
摘要:
A method of determining a center hole of a material crankshaft, which is obtained through molding with first and second molds, includes: obtaining first shape data of a first portion of the material crankshaft molded by the first mold and second shape data of a second portion of the material crankshaft molded by the second mold; comparing the first and second shape data respectively with first and second designed data corresponding to the first and second molds, respectively, for computing a misalignment amount of each of the first and second portions due to misalignment between the first and second molds; adjusting, based on the misalignment amount, data corresponding to the misalignment amount to reproduce actual shape data; and determining, based on the actual shape data, a position of the center hole in the material crankshaft such that a rotation balance of the material crankshaft is within a predetermined range.
摘要:
A method and apparatus for estimating inertia of an electric motor that drives a load wherein the load has a limited range of load travel, the method comprising the steps of identifying an intermediate position along the range of load travel that is separated from a first end of the range of load travel, receiving a sensor signal from a sensor attached to the electric motor, with the load separated from a first end of the range of load travel, increasing a velocity of the electric motor from a first velocity as the load travels toward the first end of the range of load travel, identifying when the load has reached the intermediate position, identifying the motor velocity at the intermediate position as a second velocity, in response to the sensor signal, detecting a first rate of velocity change from the first velocity to the second velocity, acquiring a plurality of torque samples while the electric motor is changing velocity, each torque sample representing an amount of torque generated by the electric motor, calculating a first torque average by averaging the plurality of torque samples and deriving an inertia value as a function of the first rate of velocity change and the first average amount of torque.
摘要:
A method of estimating load inertia for a motor is provided that can estimate the load inertia even when a cogging torque of the motor is large or resonance occurs in the mechanical system of the load. Vibration is detected in an acceleration feedback signal. An estimated inertia gain Kn is multiplied by a coefficient α of zero (0) or more but less than one (1) when the detected vibration is equal to or more than a predetermined level, or the estimated inertia gain Kn is multiplied by a coefficient α of one (1) when the detected vibration is less than the predetermined level.
摘要翻译:提供一种估计电动机的负载惯量的方法,即使当电动机的齿槽转矩大或在负载的机械系统中发生共振时,也可以估计负载惯量。 在加速度反馈信号中检测振动。 或者估计的惯性增益K N n被乘以零(0)以上且小于1(1)的系数α,当检测到的振动等于或大于预定水平时, 当检测到的振动小于预定水平时,惯性增益K N n SUB>乘以1(1)的系数α。
摘要:
A device for measuring the inertia tensor of a rigid body at least consists of a rigid body (11), the inertia tensor of which is to be measured, at least one suspension means (20) with respect to at least one fixed point which sets at least one degree of fixation, excitation means (30) for causing the movement of the rigid body (11), as well as a movement detection group (40) and a data transmission group (50) to a numerical processor (60) for registering the data and executing a parameter identification procedure based upon a mathematical model of the rigid body suspended like a pendulum, suitable for obtaining the six components of the inertia tensor.
摘要:
For largely automatic determination of the moment of inertia of, in particular, an internal combustion engine on a testing stand, speed n and indicated torque M.sub.M are measured under controlled operating conditions in both a run-up phase as well as in a coasting phase. In order to eliminate the loss moment in the determination of the moment of inertia, the measuring points of the respectively same speed from the run-up phase and the coasting phase are interpreted in combination, this enabling an exact determination of the moment of inertia in a very simple way with the devices that are usually already present at a testing stand.