摘要:
One aspect can relate to determining a total time of flight that indicates an at least one applied duration and an at least one induced duration, wherein the at least one applied duration describes the time for an at least some pulse-type input energy to be applied from a transmission location to an at least one X-ray fluorescing event in the at least some matter of the at least the portion of the at least one individual, and wherein the at least one induced duration describes the time for an at least one induced X-ray fluorescing photon, to travel from the at least one X-ray fluorescing event in the at least some matter of the at least the portion of the at least one individual to a location where the at least one induced X-ray fluorescing photon is received at least partially by a detecting the at least one induced X-ray fluorescing photon. The aspect can relate to determining a location information of the at least one X-ray fluorescing event in the at least some matter of the at least the portion of the at least one individual based at least partially on the total time of flight.
摘要:
A Time of Flight mass analyser is disclosed comprising an annular ion guide having a longitudinal axis and comprising a first annular ion guide section and a second annular ion guide section. Ions are introduced into the first annular ion guide section so that the ions form substantially stable circular orbits within the first annular ion guide section about the longitudinal axis. The ions are then orthogonally accelerated ions from the first annular ion guide section into the second annular ion guide section. An ion detector is disposed within the annular ion guide and has an ion detecting surface arranged in a plane which is substantially perpendicular to the longitudinal axis.
摘要:
A Time of Flight mass analyser is disclosed comprising an annular ion guide having a longitudinal axis and comprising a first annular ion guide section and a second annular ion guide section. Ions are introduced into the first annular ion guide section so that the ions form substantially stable circular orbits within the first annular ion guide section about the longitudinal axis. An ion detector is disposed within the annular ion guide. Ions are orthogonally accelerated in a first axial direction from the first annular ion guide section into the second annular ion guide section. An axial DC potential is maintained along at least a portion of the second annular ion guide section so that the ions are reflected in a second axial direction which is substantially opposed to the first axial direction. The ions undergo multiple axial passes through the second annular ion guide section before being detected by the ion detector.
摘要:
A Time of Flight mass analyzer is disclosed comprising an annular ion guide having a longitudinal axis and comprising a first annular ion guide section and a second annular ion guide section. Ions are introduced into the first annular ion guide section so that the ions form substantially stable circular orbits within the first annular ion guide section about the longitudinal axis. An ion detector is disposed within the annular ion guide. Ions are orthogonally accelerated in a first axial direction from the first annular ion guide section into the second annular ion guide section. An axial DC potential is maintained along at least a portion of the second annular ion guide section so that the ions are reflected in a second axial direction which is substantially opposed to the first axial direction. The ions undergo multiple axial passes through the second annular ion guide section before being detected by the ion detector.
摘要:
A Time of Flight mass analyser is disclosed comprising an annular ion guide having a longitudinal axis and comprising a first annular ion guide section and a second annular ion guide section. Ions are introduced into the first annular ion guide section so that the ions form substantially stable circular orbits within the first annular ion guide section about the longitudinal axis. An ion detector is disposed within the annular ion guide. Ions are orthogonally accelerated in a first axial direction from the first annular ion guide section into the second annular ion guide section. An axial DC potential is maintained along at least a portion of the second annular ion guide section so that the ions are reflected in a second axial direction which is substantially opposed to the first axial direction. The ions undergo multiple axial passes through the second annular ion guide section before being detected by the ion detector.
摘要:
The disclosure provides a circuit to mitigate ripple. The circuit includes a controller that generates a PWM (pulse width modulated) clock signal. A DC/DC converter receives the PWM clock signal, and generates an output signal. A light source is coupled to the DC/DC converter, and receives the output signal. The light source transmits light pulses during an integration time. A time integral of the output signal during the integration time is constant during a plurality of quad time periods.
摘要翻译:本公开提供了一种减轻纹波的电路。 该电路包括产生PWM(脉宽调制)时钟信号的控制器。 DC / DC转换器接收PWM时钟信号,并产生输出信号。 光源耦合到DC / DC转换器,并接收输出信号。 光源在积分时间内传输光脉冲。 积分时间期间的输出信号的时间积分在多个四倍时间段期间是恒定的。
摘要:
A Time of Flight mass analyzer is disclosed comprising an annular ion guide having a longitudinal axis and comprising a first annular ion guide section and a second annular ion guide section. Ions are introduced into the first annular ion guide section so that the ions form substantially stable circular orbits within the first annular ion guide section about the longitudinal axis. An ion detector is disposed within the annular ion guide. Ions are orthogonally accelerated in a first axial direction from the first annular ion guide section into the second annular ion guide section. An axial DC potential is maintained along at least a portion of the second annular ion guide section so that the ions are reflected in a second axial direction which is substantially opposed to the first axial direction. The ions undergo multiple axial passes through the second annular ion guide section before being detected by the ion detector.
摘要:
The present invention provides an ion group irradiation device for irradiating a sample with an ion group, comprising: an ion group selecting unit configured to select, from ions released from an ion source, at least two ion groups formed of ions having different average masses; and a primary ion irradiation unit configured to irradiate the sample with the at least two ion groups selected by the ion group selecting unit, wherein the ion group selecting unit selects at least one ion group and further selects the at least two ion groups from each of the selected at least one ion group.
摘要:
One aspect can relate to determining a total time of flight that indicates an at least one applied duration and an at least one induced duration, wherein the at least one applied duration describes the time for an at least some pulse-type input energy to be applied from a transmission location to an at least one X-ray fluorescing event in the at least some matter of the at least the portion of the at least one individual, and wherein the at least one induced duration describes the time for an at least one induced X-ray fluorescing photon, to travel from the at least one X-ray fluorescing event in the at least some matter of the at least the portion of the at least one individual to a location where the at least one induced X-ray fluorescing photon is received at least partially by a detecting the at least one induced X-ray fluorescing photon. The aspect can relate to determining a location information of the at least one X-ray fluorescing event in the at least some matter of the at least the portion of the at least one individual based at least partially on the total time of flight.
摘要:
A system for Time-of-Flight tomography includes an x-ray source capable of producing pulsed x-rays with a pulse duration of about 100 ps or faster, a single-photon detector configured to detect individual photons backscattered from an object when present and illuminated by the x-ray source, the single-photon detector producing a two-dimensional image, and a processor for determining a Time-of-Flight of an individual photon from the x-ray source and backscattered by the object to the single-photon detector. Operating the system pulsing at 100 picosecond or faster, pulsing the x-ray source at least once to illuminate at least part of an object, detecting via a detector one or more individual backscattered photons from the object, and determining a length of time for an individual backscattered photon to travel from the x-ray source to the photon detector.