摘要:
A method and apparatus are provided for "field effect imaging" of moving substrates, such as webs of paper. Non-conductive, non-magnetic toner having approximately a 5-20 micron mean particle size is electrically charged to a level of at least about 8 micro Coulombs/gram and then a first roller with a conductive surface is brought into operative association with the electrically charged toner so that toner particles adhere to the surface. The toner particles are preferably maintained in an electrostatic fluidized bed, and charged by a corona element in the bed. An array of pin or stylus primary electrodes are selectively energized or de-energized to provide no-write or write condition, respectively using a computer to switch the electrodes into or out of operative connection to a source of electrical potential. The toner particles are transferred from the first roller to a substrate either directly (after passing past the primary electrodes), or they are first transferred to a second roller which then brings the toner particles into contact with the substrate. If a second roller is utilized, the primary electrodes can be in association with the first roller, or between the first and second rollers for transferring only "write" toner to the second roller.
摘要:
A method and apparatus are provided for "field effect imaging" of moving substrates, such as webs of paper. Non-conductive, non-magnetic toner having approximately a 5-20 micron mean particle size is electrically charged to a level of at least about 8 micro Coulombs/gram and then a first roller with a conductive surface is brought into operative association with the electrically charged toner so that toner particles adhere to the surface. The toner particles are preferably maintained in an electrostatic fluidized bed, and charged by a corona element in the bed. An array of pin or stylus primary electrodes are selectively energized or de-energized to provide no-write or write condition, respectively using a computer to switch the electrodes into or out of operative connection to a source of electrical potential. The toner particles are transferred from the first roller to a substrate either directly (after passing past the primary electrodes), or they are first transferred to a second roller which then brings the toner particles into contact with the substrate. If a second roller is utilized, the primary electrodes can be in association with the first roller, or between the first and second rollers for transferring only "write" toner to the second roller.
摘要:
A method and apparatus are provided for "field effect imaging" of moving substrates, such as webs of paper. Non-conductive, nonmagnetic toner having approximately a 5-20 micron mean particle size is electrically charged to a level of at least about 8 micro Coulombs/gram and then a first roller with a conductive surface is brought into operative association with the electrically charged toner so that toner particles adhere to the surface. The toner particles are preferably maintained in an electrostatic fluidized bed, and charged by a corona element in the bed. An array of pin or stylus primary electrodes are selectively energized or de-energized to provide no-write or write condition, respectively using a computer to switch the electrodes into or out of operative connection to a source of electrical potential. The toner particles are transferred from the first roller to a substrate either directly (after passing past the primary electrodes), or they are first transferred to a second roller which then brings the toner particles into contact with the substrate. If a second roller is utilized, the primary electrodes can be in association with the first roller, or between the first and second rollers for transferring only "write" toner to the second roller.
摘要:
Electromagnetic toner is supplied to the surface of the image development drum formed of a hollow aluminum covered with electric insulation; a permanent magnet is installed in the hollow portion of the image development drum; a recording electrode is provided on the surface side of the image development drum with a small gap formed between the drum surface and the electrode; a voltage is applied between the recording electrode and the image development drum according to the image to be recorded; the image development drum is turned to form a toner image on its surface; and the toner image formed on the drum surface is then transferred onto a recording sheet.
摘要:
In an image forming apparatus, the image bearing member has a surface and configured to rotate about an axis. The collection device is in contact with the surface, and configured to collect materials adhered to the surface. The developing roller is configured to provide a charged toner having a first polarity. The processor is configured to perform: executing a print job in a printing period; executing, in a non-printing period, a first process in which the image bearing member is rotated at least one rotation while a holding bias is applied to the collection device, the holding bias having a second polarity opposite to the first polarity; and executing, in a non-printing period after the first process, a second process in which the image bearing member is rotated while an ejection bias is applied to the collection device, the ejection bias having the first polarity.
摘要:
A method and apparatus for enhancing image resolution characteristics of an electrostatographic printing device use toners of opposite polarity to generate a toner image.
摘要:
A method and an apparatus for recording an image is disclosed, in which toner is supplied between a conductive recording drum covered with an insulating material and recording electrodes with the forward end thereof with a small gap from the drum and inclined at a great angle upstream of the direction of rotation of the recording drum. A toner carriage force is generated in the toner to flow out downstream by rotation of the recording drum. A permanent magnet is arranged in the recording drum to form a toner chain inclined at a great angle downstream of the recording drum from the forward end of the recording electrodes. The component of the magnetic force of the magnet in the direction of drum movement is balanced with the toner carriage force. Upon application of a recording voltage to the recording electrodes under this condition, the toner of the most downstream toner chain in contact with the drum surface develops a force of adhesion to the recording drum so that the drum rotates downstream with the toner attached thereon, thus forming an image due to the toner on the recording drum.