摘要:
In at least one aspect, the invention provides an electronic device fabrication facility (Fab) that uses small lot carriers that may be transparently integrated into an existing Fab that uses large lot carriers. A manufacturing execution system (MES) may interact with the inventive small lot Fab as if the small lot Fab is any other Fab component in an existing large lot Fab without requiring knowledge of how to control small lot Fab components (e.g., beyond specifying a processing recipe). A small lot Fab according to the present invention may encapsulate the small lot Fab's internal use of small lot components and present itself to a large lot Fab's MES as if the small lot Fab is a component that uses large lot carriers.
摘要:
By determining a metric for tool utilization in a manufacturing environment on the basis of tool-specific characteristics and a probability distribution for the transport capability of an automated material handling system, the influence of the transport system on the tool performance may be effectively determined. For this purpose, an average delay caused by the automated material handling system may be iteratively calculated on the basis of a respective required carrier exchange time, which depends on tool- and process-specific characteristics. From the corresponding average delay, an appropriate metric, such as a utilization loss factor, may be determined.
摘要:
The present invention provides various aspects for supporting multilevel fabricators. In some examples, the multilevel fabricators may include a cleanspace region for moving work material. In some examples, panels of filters may be positioned to support the cleanspace. In some embodiments existing processing equipment and automation are placed into the new environment. In other embodiments the processing equipment is placed and new automation equipment is used. Automated tool placement equipment may be used to place the equipment. In some examples, automated tool handling equipment may be used to remove and replace processing equipment into the multilevel fabricator.
摘要:
In one aspect a factory automation system for a wafer fab is provided. The factory automation system comprises: a manufacturing execution system (“MES”) for providing lot information; a material control system (“MCS”) for providing dynamic traffic information; an automated material handling system (“AMHS”) for providing static route information; and a real-time dispatching (“RTD”) system to select a destination and a route for a wafer carrier in response to a transfer request. In another aspect a method of transferring a wafer lot within a wafer fabrication facility (“fab”) using a factory automation system is provided. The method comprises: receiving a transfer request to move the wafer lot from a first position to a second position within the fab; obtaining lot information, dynamic traffic information, and static traffic information; using the information to select a route between the first position and the second position; and executing the transfer using the selected route.
摘要:
In at least one aspect, the invention provides an electronic device fabrication facility (Fab) that uses small lot carriers that may be transparently integrated into an existing Fab that uses large lot carriers. A manufacturing execution system (MES) may interact with the inventive small lot Fab as if the small lot Fab is any other Fab component in an existing large lot Fab without requiring knowledge of how to control small lot Fab components (e.g., beyond specifying a processing recipe). A small lot Fab according to the present invention may encapsulate the small lot Fab's internal use of small lot components and present itself to a large lot Fab's MES as if the small lot Fab is a component that uses large lot carriers.
摘要:
In at least one aspect, the invention provides an electronic device fabrication facility (Fab) that uses small lot carriers that may be transparently integrated into an existing Fab that uses large lot carriers. A manufacturing execution system (MES) may interact with the inventive small lot Fab as if the small lot Fab is any other Fab component in an existing large lot Fab without requiring knowledge of how to control small lot Fab components (e.g., beyond specifying a processing recipe). A small lot Fab according to the present invention may encapsulate the small lot Fab's internal use of small lot components and present itself to a large lot Fab's MES as if the small lot Fab is a component that uses large lot carriers.
摘要:
A method serves to operate a transport system, in particular a multi-carrier system, that comprises a plurality of linear motors that are arranged in a row and have a guide track, a plurality of transport elements that can be moved along the guide track by means of the linear motors, and a plurality of stations along the guide track, wherein each of the transport elements is associated with one of the stations. The method has the following steps:
generating an instance for each of the transport elements, generating a list for each of the stations, wherein the instance for each of the transport elements associated with the respective station is associated with the list, and wherein, within the respective list, the instance of each transport element is linked to the instance of the transport element directly ahead of the observed transport element and to the instance of the transport element directly behind the observed transport element, transferring a transport element from a first station to a directly following second station and inserting the instance of this transport element into the list of the second station if a transport job that goes beyond the first station is present for the transport element, wherein the transfer of the instance takes place in an event-controlled manner and independently of a transfer point if a predetermined transfer condition is fulfilled, and controlling the linear motors to execute travel jobs of the transport elements.
摘要:
A semiconductor fabrication system includes a chemical mechanical polishing system, a cassette holding area enclosed by a wall and having a door openable by an operator to place one or more cassettes into the cassette holding area, a robot configured to transfer substrates between a cassette in the cassette holding area to the chemical mechanical polishing system, a computer controller configured to cause the robot to move to a home position, a circuit breaker in a power supply line to the robot, a door sensor to detect whether the door is open, a robot presence sensor to detect whether the robot is in the home position, and control circuitry configured to receive signals from the door sensor and the robot presence sensor and cause the circuit breaker to cut power to the robot if the door is open and the robot is not in the home position.
摘要:
By determining a metric for tool utilization in a manufacturing environment on the basis of tool-specific characteristics and a probability distribution for the transport capability of an automated material handling system, the influence of the transport system on the tool performance may be effectively determined. For this purpose, an average delay caused by the automated material handling system may be iteratively calculated on the basis of a respective required carrier exchange time, which depends on tool- and process-specific characteristics. From the corresponding average delay, an appropriate metric, such as a utilization loss factor, may be determined.
摘要:
A carrier handler is provided that may be adapted to (1) accept transfer commands for carriers before the carriers arrive within the domain of the carrier handler; (2) accept termination commands that result in prior commands being cancelled or aborted independent of the state of the prior commands; (3) select queued commands for out-of-order execution to take advantage of earliest arriving transport system carrier supports suitable for use with the selected commands and/or based upon the anticipated time needed to execute the commands; (4) remove empty carriers from an associated tool to improve port availability; (5) continue to operate even after transfers involving storage locations fail by removing the failed locations from a usable locations list; (6) verify the integrity of carrier and transfer destination status data with sensors prior to attempting a transfer; and (7) calibrate carrier handoffs with a transport system using a calibration carrier equipped with sensors.