Abstract:
There is described a system and a computer-implemented method for controlling a part-processing device of a computer numerical control machine to bend cannulas. The method comprises the step of receiving one or more set parameters relating to one or more desired bend characteristics. The method also comprises the step of determining one or more uncontrolled inputs, the one or more uncontrolled inputs comprising bend parameters of a previously bent cannula. The method also comprises the step of inputting the one or more set parameters and the one or more uncontrolled inputs into a machine learning model to produce a plurality of outputs. The method also comprises the step of determining control parameters using the plurality of outputs, the control parameters relating to one or more settings of the part-processing device. The method also comprises the steps of setting the part-processing device using the control parameters and the uncontrolled inputs and bending a cannula using the part-processing device.
Abstract:
A flexible workpiece assembling method for assembling a flexible workpiece (W) with an object by using a first robot comprising a first hand and a second robot comprising a second hand includes the steps of: gripping a first portion of the flexible workpiece by the first hand and gripping a second portion of the flexible workpiece different from the first portion by the second hand; moving the flexible workpiece to the object through a cooperating operation of the first and second robots; deforming the flexible workpiece into a shape corresponding to the nonflexible object by the first and second robots; and assembling the flexible workpiece onto the nonflexible object by the first and second robots. As a result, the flexible workpiece can be accurately assembled onto the nonflexible object without breaking or tearing. The first and second robots may comprise a pushing means for pushing the flexible workpiece into the object.
Abstract:
A robot system includes an end effector, a robot arm, and a controller. The end effector includes a pressure roller and a linear motion mechanism. The linear motion mechanism is configured to move the pressure roller with respect to a pressed surface. The robot arm is configured to support the end effector. The controller is configured to control the linear motion mechanism to move the pressure roller to make a pressing force of the pressure roller against the pressed surface approximately uniform.
Abstract:
A computing system is communicated with a metal fabrication device for analyzing performance of an industrial robot. The metal fabrication device includes the industrial robot, and a plate bender. The computing system is operable to generate an analysis report of the performance of the industrial robot by providing section model creating function, bending point obtainting function, bending operation monitoring function, workpiece modeling function for the metal fabrication device. The quality of a finished workpiece bent by the industrial robot from a metal plate may be analyzed from the analysis report generated by the computing system.
Abstract:
A computing system is communicated with a metal fabrication device for analyzing performance of an industrial robot. The metal fabrication device includes the industrial robot, and a plate bender. The computing system is operable to generate an analysis report of the performance of the industrial robot by providing section model creating function, bending point obtainting function, bending operation monitoring function, workpiece modeling function for the metal fabrication device. The quality of a finished workpiece bent by the industrial robot from a metal plate may be analyzed from the analysis report generated by the computing system.
Abstract:
A robot system includes an end effector, a robot arm, and a controller. The end effector includes a pressure roller and a linear motion mechanism. The linear motion mechanism is configured to move the pressure roller with respect to a pressed surface. The robot arm is configured to support the end effector. The controller is configured to control the linear motion mechanism to move the pressure roller to make a pressing force of the pressure roller against the pressed surface approximately uniform.
Abstract:
In a teaching device for robot that moves a flexible body holding unit holding a flexible body and performs teaching of a fitting task of the flexible body to a thing to generate teaching data, a reaching decision unit decides that a front end of the flexible body reaches the thing, a curvature acquiring unit acquires information of evaluation of a degree of curvature of the flexible body when the reaching decision unit decides the reaching, and a notification unit performs predetermined notification about teaching on the basis of the acquired information of evaluation.
Abstract:
In a teaching device for robot that moves a flexible body holding unit holding a flexible body and performs teaching of a fitting task of the flexible body to a thing to generate teaching data, a reaching decision unit decides that a front end of the flexible body reaches the thing, a curvature acquiring unit acquires information of evaluation of a degree of curvature of the flexible body when the reaching decision unit decides the reaching, and a notification unit performs predetermined notification about teaching on the basis of the acquired information of evaluation.