Abstract:
An edge drop control device calculates a first calculated manipulated amount of a work roll shift device for bringing a difference between a measured edge drop amount and a target amount close to zero without using a work roll bender device. The edge drop control device calculates a second calculated manipulated amount of the work roll bender device for bringing a difference between a measured edge drop amount and the target amount close to zero without using a work roll shift device. The edge drop control device outputs, when the first calculated manipulated amount is out of an allowable range, the second calculated manipulated amount to the work roll bender device and also outputs a difference between an amount that corresponds to the second calculated manipulated amount and the first calculated manipulated amount, to the work roll shift device.
Abstract:
Apparatus to control and adjust the drawing action in a rolling mill provided with rolling stands through which a product passes. A video monitoring system acquires frames of the product; a processing system that processes the frames and defines a normal rolling range within which the product being rolled must be positioned; identifies the position of the product and its geometric characteristics; and identifies a possible variation of the position of the product being rolled over time based on the analysis of the sequence of frames acquired. An automation system is associated with the rolling mill, configured to receive data relating to the position of the product to determine the continuation of the rolling if the product is correctly positioned in the range, or a variation of the rolling parameters if the position of the product being rolled is able to generate a cobble which is outside of the range.
Abstract:
A roll press machine that presses-forming of a work is disclosed in which a plurality of electrode layers having been baked on a metal foil. The material is supplied as a work W into a gap between a lower roll and an upper roll for consolidating. As the work travels through the gap, a controlling device is configured to maintain the gap larger than a consolidating gap until the front edge of the work passes through the gap by a first predetermined distance, then maintain the gap equal to the consolidation gap until the rear edge of the work arrives downstream of the gap by a second predetermined distance, and maintain the gap larger than the consolidation gap until the rea edge leaves the gap.
Abstract:
An embodiment of a tool assembly includes a hub connected to a distal end of a spring-loaded shaft assembly disposed along a first axis. An upper hub portion is adjacent to the distal end of the spring-loaded shaft assembly aligned with the first axis, and a lower hub portion extends along a second axis, forming a nonzero angle relative to the first axis. A roller disk is joined to the lower portion of the hub, and is rotatable about the second axis parallel to the second portion of the hub. A load cell is disposed along the first axis between a proximal end of the shaft and the roller disk, and is adapted to measure a downward force applied along the shaft assembly.
Abstract:
A robot system includes an end effector, a robot arm, and a controller. The end effector includes a pressure roller and a linear motion mechanism. The linear motion mechanism is configured to move the pressure roller with respect to a pressed surface. The robot arm is configured to support the end effector. The controller is configured to control the linear motion mechanism to move the pressure roller to make a pressing force of the pressure roller against the pressed surface approximately uniform.
Abstract:
In a decision control device of a control system, a predetermined pass schedule is decided by adjusting the rolling force per unit width at a last stand of a hot finishing tandem rolling mill to cause the edge profile on the outlet side of the last stand to fall within an allowable range based on the relationship between a strip crown and the edge profile on the outlet side of the last stand with respect to the rolling force per unit width and a strip shape control parameter, obtained regarding the last stand, and adjusting the strip shape control parameter of the last stand to cause the strip shape on the outlet side of the last stand to fall within an allowable range and cause the strip crown to become a predetermined value or smaller.
Abstract:
The invention relates to a method, a computer program and a rolling mill train for cold rolling a metal strip (200). In order to achieve a shortening of undesired off-gauge lengths, the method according to the invention provides that the head (210) of the metal strip (200) already undergoes a thickness reduction at the first active rolling stand (n) in the rolling mill train, and then is transported on to the next rolling stand, in order to undergo a further thickness reduction there. The method according to the invention also provides for further reducing the initial pass thickness at the n-th rolling stand in accordance with the tensile stress that has built up in the meantime between the n+1-th and the n-th rolling stand.
Abstract:
A current temperature is ascertained for sections of a strip ahead of a first mill stand. The temperatures of the strip sections are predicted with a prediction horizon corresponding to multiple strip sections, including when each strip section is milled in the first mill stand for which time a nip profile formed by the working rolls is predicted. A control parameter for milling a specific strip section in the first mill stand is ascertained for controlling a control device of the first mill stand. A manipulated variable curve for the control device, influencing the nip profile of a nip formed by working rolls of the first mill stand, is set for the prediction horizon and optimized for the predicted nip profile and a desired profile. The current value of the optimized manipulated variable curve corresponds to the control parameter which is fed to the control device as the manipulated variable.
Abstract:
A regulation device (7) for a rolling stand (2) has a force regulator (8) and a position regulator (9) mounted underneath the force regulator. During operation of the regulation device, a rolling force target value (F*) and a rolling force actual value (F) are supplied to the force regulator (8). A regulating distance correcting value (ds1*) is determined by the force regulator (8) from the rolling force target value (F*) and the rolling force actual value (F). The regulating distance correcting value (ds1*), an excentricity compensation value (ds2*), and a regulating distance actual value (s) of a regulating element (6) are supplied to the position regulator (9). A correcting quantity (dq) is determined by the position regulator (9) from the values (ds1*, ds2*, s) supplied thereto and is delivered to the regulating element (6). The regulating distance of the regulating element (6) is changed according to the correcting quantity (dq).
Abstract:
The invention relates to a method for adjusting the rolls (1, 2, 3, ) of a roll stand (5), wherein the roll stand (5) comprises at least two interacting working rolls (1,2), wherein one of the working rolls (1) is arranged in the roll stand (5) in a displaceable manner for adjusting a roll gap, and wherein the other working roll (2) can be rotated in the roll stand (5) in a working position, but for defining a passline (p) in the direction normal to the surface of the roll material is fixed in a non-displaceable manner. In order to increase the rolling accuracy, the invention proposes the following steps: a) determining the position (Sist) of the working roll (2) arranged in a fixed manner in the roll stand (5); b) comparing the determined value (Sist) of the position to a target value (Ssoll); c) adjusting the working roll (2) fixedly arranged in the roll stand (5) depending on the comparison value determined in step b) using at least one adjusting element (6) such that the position (S) of the working roll (2) fixedly arranged in the roll stand (5) at least largely reaches the target value (Ssoll). The invention further relates to a roll stand comprising at least two interacting working rolls.