Abstract:
The invention is directed to a method and an arrangement for controlling the position of an actuating element (1) which prevent damage to the actuating element by a collision with at least one stop (25, 30) and simultaneously ensure good dynamic characteristics. The position of the actuating element (1) tracks a desired value within a displacement range. The displacement range is limited for the actuating element (1) by at least one stop (25, 30). A check is made as to whether the distance between the desired value for the position of the actuating element (1) and the at least one stop (25, 30) drops below a pregiven value (S1). Only in this case is a change of the desired value limited.
Abstract:
A tool replacement apparatus according to the present invention includes: a turning tool magazine capable of attaching or removing a tool to/from a spindle of a machine tool; a tool replacement control unit which controls operations of turning the tool magazine and attaching or removing a tool to/from a spindle; and a setting unit which sets a rotatable range of the tool magazine. The tool replacement control unit includes: a determining unit which determines whether or not a designated rotation angle in an instruction for turning the tool magazine is within the rotatable range set by the setting unit; and a unit which stops an operation of replacing a tool when the determining unit determines that a designated rotation angle is out of a rotatable range.
Abstract:
An operation limiting device applicable to a wide variety of machine tools and which improves the freedom of setting an operation limiting area. Two or three drive axes (Xa, Za) in different directions are designated from among a plurality of drive axes in the machine tool and the designated drive axes (Xa, Za) form the two or three dimensional coordinate system. An area (Ar) for limiting the operation of the mobile body is set in the two or three dimensional coordinate system. A drive axis (Xa) which is in operation is determined, and in the two or three coordinate system including the drive axis which is in operation the operation of the mobile body is limited when the mobile body enters into the limiting area (Ar).
Abstract:
The invention is directed to a method and an arrangement for controlling the position of an actuating element (1) which prevent damage to the actuating element by a collision with at least one stop (25, 30) and simultaneously ensure good dynamic characteristics. The position of the actuating element (1) tracks a desired value within a displacement range. The displacement range is limited for the actuating element (1) by at least one stop (25, 30). A check is made as to whether the distance between the desired value for the position of the actuating element (1) and the at least one stop (25, 30) drops below a pregiven value (S1). Only in this case is a change of the desired value limited.
Abstract:
A process for guiding an instrument in space, in which the instrument is arranged at the free end of an articulated arm whose arm sections are caused to pivot and/or travel with respect to each other by drive units. The instrument is caused to travel in a limited movement region under the control of a control device. For predetermination of the movement region for points that are situated in the movement region, a respective pivot angle and/or travel position between the respective arm sections is set. The respective position and attitude of the instrument is sensed by at least a first measuring device. For hand-controlled guiding of the instrument, an actuating force exerted on the instrument and/or the articulated arm is sensed by a second measuring device. The arm sections are mutually pivoted and/or moved in dependence on the actuating force, the position of the instrument, and the predetermined movement region, such that the instrument moves within the predetermined movement region substantially in the direction of the actuating force.
Abstract:
A method for limiting a working area of a CNC machine tool uses a servo controller for transferring a tool which periodically generates an interrupt signal to a main controller and the main controller periodically transmits position data to the servo controller according to an algorithm of a built-in interrupt routine. The algorithm of the interrupt routine comprises the steps of obtaining standstill position data by subtracting an accumulation value of output position data reflecting a predetermined acceleration/deceleration time constant from an accumulation value of target position data for every corresponding interrupt period, when the interrupt signal is input from the servo controller, and adding the subtraction result to current position data, and transmitting predetermined control data after comparing the standstill position data with predetermined boundary position data. Therefore, the working area of the machine tool can be controlled by software so that accurate numerical control can be continuously performed without causing physical impact to the system.
Abstract:
A machine tool includes a spindle head (4) movable in a predetermined direction, a spindle (9) attached to the spindle head (4) for undergoing machining of a workpiece, a column (3) supporting the spindle head (4), the column (3) being movable over a predetermined plane (X-Y plane) perpendicular to the predetermined direction so that the spindle head (4) is movable over a plurality of machining regions (22L, 22R), a plurality of palettes (23L, 23R) each detachably mounting the workpiece and movable into and away from its associated machining region, and a table (13) mounting the plurality of palettes (23L, 23R) thereon. In one aspect of the invention, an external operation box (101) is provided from which a selected program number is entered and is impressed on an input port of a CPU (100). The CPU (100) calls a machining program identified by the selected program number to thus perform machining of the palette loaded on the associated machining region. In another aspect of the invention, an end point to which the column is finally moved is checked if it is within an allowable movement range of the column and the movement of the column is prohibited if the end point is out of the allowable range.
Abstract:
In a multistep bending machine, a movable apron (LA) provided with a movable tool (D) is moved in a multistep manner up and down toward a fixed apron (UA) provided with a fixed tool (P) by a hydraulic system including a novel die-axis drive mechanism (DDM), when a foot switch (FS) is kept depressed.In addition, an interference prevention device (IPA), a bending speed determining device (SDA), a tool distance determining device (TDA), a backgage stopper positioning device (SPA), and a backgage stopper pull-back distance controlling device (PDC) are all incorporated in the bending machine to realize a full automatic multistep bending operation.