Abstract:
Provided is a development view generation system including a storage unit that stores information on a three-dimensional shape of an article, a development surface determination unit in which when there is a second surface adjacent to a first surface, the first surface being a determination target, and there is a third surface adjacent to the first surface and the second surface, if an angle between the first surface and the second surface and an angle between the first surface and the third surface are a pre-set threshold or less, the development surface determination unit determines the first surface as a development surface, and if any one of the respective angles is greater than the threshold, the development surface determination unit determines the first surface as a non-development surface, and a development view generation unit that generates a development view, for a surface which is determined as a development surface.
Abstract:
A computer-based method for generating a context preserving mapping of tubular structures represented by a 3D dataset having the steps of projecting a skeleton of a 3D tubular structure on to a 2D plane, and adjusting the projected skeleton to correct projection imbued distortion in skeleton length. The 2D projected skeleton is processed to remove intersections, and a surface boundary around the 2D skeleton is determined for the map. The 3D surface of the skeleton is mapped to match the 3D boundary to create a 3D map of the tubular structure.
Abstract:
An apparatus and method for reconstructing an experience item in 3D. The apparatus for reconstructing an experience item in 3D includes a 3D data generation unit for generating 3D data by reconstructing the 3D shape of a target object to be reconstructed in 3D, a 2D data generation unit for generating 2D data by performing 2D parameterization on the 3D data, an attribute setting unit for assigning attribute information corresponding to the target object to the 3D data, an editing unit for receiving editing of the 2D data from a user, and an experience item generation unit for generating an experience item corresponding to the target object using the 3D data corresponding to the edited 2D data and the attribute information.
Abstract:
An information processing apparatus has a decomposition unit that decomposes an image into multiple frequency component images, a reduction unit that reduces linear noise included in the frequent component images, and a reconstruction unit that reconstructs the frequency component images with reduced linear noise.
Abstract:
A method, a computer readable medium with instructions to execute a method, and a carton designed using a method. The method includes accepting a specification of a carton made up of a substrate and having at least one curved crease. The method further includes for a curved crease, accepting a folding angle at any point of the crease; and automatically calculating at least one shape of the folded carton in order to determine a three-dimensional model of the folded carton.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, receiving a graphical representation of an object surface having a number of inscriptions indicative of information encoded upon the object surface. The graphical representation of the object surface is transcribed by the system to determine markings from the inscriptions. A number of alternative corresponding symbols are determined by the system. The alternative corresponding cuneiform symbols are determined from a number of the markings. A number of alternative transliterations are determined by the system. The alternative transliterations are determined from of a symbol of the multiple alternative corresponding symbols. A number of alternative translations are also determined by the system of a transliteration of the multiple translations transliterations. Other embodiments are disclosed.
Abstract:
An information processing section of a game apparatus executes a program for implementing a step S100 of acquiring a camera image; a step S200 of detecting a marker; a step S400 of calculating a position and an orientation of a virtual camera; a step S600 of generating an animation in which layed-flat surfaces of a hexahedron appear, and the hexahedron is folded so as to confine virtual objects representing targets therein when a stage is cleared; a step S800 of generating an animation in which the folded hexahedron is unfolded so as to position different virtual objects thereon; a step S900 of mapping the photographed image on objects; a step S1000 of taking an image of the objects by means of the virtual camera; and a step S1100, S1200 of displaying the camera image and an object image which is superimposed on the camera image.
Abstract:
Developable surfaces are generated by interactively evolving curves on a 2D surface embedded in 3D space using an iterative process to produce a model for the construction of a stylized three dimensional sculpture. Each iteration includes tessellating loops formed by the curves on the surface and unfolding the resulting tessellated strips onto a 2D plane. Collisions between the unfolded tessellated strips in 2D and between the loops in 3D are resolved, and the rendered evolved curve in 3D and tessellated strips in 2D are displayed simultaneously during the evolution. A graphical user interface allows the curve network, tessellated strips, and curve evolution parameters to be modified by a user. 2D textures may be mapped to the unfolded tessellated strips, and a set of tool paths may be output for cutting a 2D material.
Abstract:
An information processing apparatus has a decomposition unit that decomposes an image into multiple frequency component images, a reduction unit that reduces linear noise included in the frequent component images, and a reconstruction unit that reconstructs the frequency component images with reduced linear noise.
Abstract:
A method of generating an image of a segment of a lumen structure comprises acquiring volumetric image data that comprises image data representative of a longitudinal segment of a lumen structure, extracting the segment of lumen structure from the volumetric image, calculating a thickness of planar MPR slab that at least encompasses the longitudinal segment of lumen structure, and rendering a planar MPR slab image based on the thickness and the volumetric image data.