Abstract:
A method according to one embodiment includes receiving or determining primary velocity based on at least c of reading information encoded on a magnetic tape and a parameter associated with a motor of a drive mechanism. At a switching point, a reference velocity is made about equal to the primary velocity. After the switching point, the reference velocity is determined at various intervals. Also after the switching point, a value representative of a difference between the reference velocity and the primary velocity is determined, and a speed of the motor of the drive mechanism is adjusted for minimizing the difference between the reference velocity and the primary velocity. A system according to one embodiment includes a controller for controlling a drive mechanism, the controller being configured to perform the foregoing method.
Abstract:
In one embodiment, a system includes a controller configured to: determine a reference velocity at various intervals, receive or determine a secondary velocity based at least in part on a parameter associated with a drive mechanism motor, determine a value representative of a difference between the reference velocity and secondary velocity, adjust a speed of the motor of the drive mechanism for minimizing the difference between the reference velocity and secondary velocity, receive/determine a primary velocity based on reading information encoded on a magnetic tape, at a switching point, make the reference velocity about equal to the primary velocity, after the switching point, determine the reference velocity at various intervals, after the switching point, determine a value representative of a difference between the reference velocity and primary velocity, and adjust the speed of the motor of the drive mechanism for minimizing the difference between the reference velocity and primary velocity.
Abstract:
The transport apparatus has a device for determining the transport speed of a tape-type medium. A linear array sensor is provided, which extends along the transport direction. Furthermore, means are provided in order to image a region of the medium onto the linear array sensor. A signal processing circuit connected to the linear array sensor determines the transport speed of the medium from the output signals of the linear array sensor.
Abstract:
Calibration logic separately operates DC motors of a tape drive at a steady state estimated velocity (Omega C) for at least one full revolution without a tape; senses Hall sensor(s) to indicate a full revolution of each motor, measuring the time of the full revolution; determines the actual velocity (Omega A) of each motor employing the measured time; compares Omega C to Omega A to determine a calibration constant (K calib) for each motor; to calibrate the motor velocity of each motor, for determining the velocity for a mounted tape by averaging the tape velocity generated by each motor based on the calibrated motor velocity.
Abstract:
Calibration logic separately operates DC motors of a tape drive at a steady state estimated velocity (Omega C) for at least one full revolution without a tape; senses Hall sensor(s) to indicate a full revolution of each motor, measuring the time of the full revolution; determines the actual velocity (Omega A) of each motor employing the measured time; compares Omega C to Omega A to determine a calibration constant (K calib) for each motor; to calibrate the motor velocity of each motor, for determining the velocity for a mounted tape by averaging the tape velocity generated by each motor based on the calibrated motor velocity.
Abstract:
Track thinning at an IN point of consecutive recording is prevented by doing a head-track one-edge coincidence tracking by using a head of a larger width than the track width. ATF control means (15) makes a control during reproduction of pre-roll of consecutive recording according to a pilot signal out of the reproduction output from heads (1a, 1c) so that centers of the heads (1a, 1c) may scan the center line of the track. A positioning signal (6g) during the control and a phase of HSW are detected by a detecting circuit (16), and a desired phase having a predetermined advanced amount is set by a desired phase setting means (18) and stored in a storage unit (19). After this, a tracking method switching control unit (23) switches the tracking method into another by which a control unit (20) controls the difference in phase between the positioning signal (6g) and the HSW to a desired value stored in the storage unit (19).
Abstract:
A method for detecting slippage in a tape path, and re-calibrating a sensing assembly in a tape storage device to account for the slippage. The method includes sensing a position of one of a supply reel and a take-up reel. In response to sensing the position of the supply reel or take-up reel, sensing a position of a guide roller. The position of the guide roller corresponds to the position of the guide roller when the position of the supply reel or the take-up reel is sensed. In response to sensing the position of the guide roller, the tape media is wound through the tape path between the supply reel and the take-up reel. In response to winding the tape media through the tape path, a second position of the one of the supply reel and the take-up reel is sensed. In response to sensing the second position of the one of the supply reel and the take-up reel, a second position of the guide roller is sensed. The second position of the guide roller corresponds to the position of the guide roller when the second position of the one of the supply reel or the take-up reel is sensed. In response to sensing the second position of the guide roller, a position difference between the first position of the guide roller and the second position of the guide roller is determined. The position difference is compared to a previous position difference to determine a relative difference in position, which is used to detect slippage.
Abstract:
A method for controlling the speed of a capstan motor in a video cassette recorder (VCR) includes modulating a capstan frequency generating (CFG) signal into a pulse signal. Time intervals corresponding to one of a rising edge to a next rising edge and a falling edge to a next falling edge of the pulse signal are calculated. The calculated time intervals are compared to a target time to obtain a difference therebetween. A rotation speed of the capstan motor is compensated based on the obtained difference to control the rotation speed of the capstan motor.
Abstract:
A magnetic tape recording/playback apparatus, and a method of operating the apparatus, which minimises or eliminates the tape damage which is caused by the tape-driving capstan spinning and skidding across the tape at start-up. Initial acceleration of the capstan is held to a relatively low level when capstan speed is below a predetermined value and capstan acceleration is at a higher level at capstan speeds above said predetermined value. Intermediate levels of capstan acceleration can be set for intermediate speeds.
Abstract:
A take-up reel sensor measures a rotation cycle of a take-up reel of a loaded tape cassette in a take-up operation. A changing rate calculating section calculates a changing rate of the rotation cycle measured by the take-up reel sensor. A type discriminating section discriminates the tape cassette as a thick hub type or a thin hub type based on the rotation cycle measured by the take-up reel sensor, while it discriminates the tape cassette as the thin hub type or a VHS-C type based on the changing rate calculated by the changing rate calculating section. A system controller conducts a high speed take-up mode suitable for the type of the tape cassette discriminated by the type discriminating section. Accordingly, the take-up mode can be controlled by employing only the rotation cycle of the take-up reel.