Abstract:
A method of fabricating a backlight module in which at least one luminescence element is positioned, including: positioning a luminescence element in at least one cavity formed on a carrier; forming a lower electrode on a substrate; transferring the luminescence element positioned on the carrier to the substrate, connecting the luminescence element to a pattern of the lower electrode formed on the substrate, and removing the carrier; forming an insulating layer on a surface of the substrate to which the luminescence element is transferred, and exposing a top region of the luminescence element; and forming an upper electrode on the exposed top region of the luminescence element. Accordingly, the backlight module including very small luminescence elements being of a micro unit in size is easily fabricated.
Abstract:
A method of manufacturing a plasma display panel is disclosed. This method can collect impurity gas in the panel without an activation treatment at a high temperature. The method includes at least one of forming a dielectric layer on a principal face of a substrate, forming barrier ribs which partition a discharging space on the dielectric layer, and forming a phosphor layer between the barrier ribs. At least one of forming the dielectric layer, forming the barrier ribs, and forming the phosphor layer uses inorganic material into which solution including degassing material is impregnated.
Abstract:
To adjust for differences in service life among light emissive materials used for respective colors by determining the length of a pixel region in the row direction according to the service lives of the light emissive materials. To allow for material change after completion of the laying out process, a light emitting region is formed such that a margin is ensured in the row or column direction within each pixel region.
Abstract:
A display panel provided with at least two arrays of coplanar electrodes Y, Y′ and a network of address electrodes X is described. The network of address electrodes X is formed between the plates bearing these electrodes and has a two-dimensional set of elementary discharge regions. Each elementary discharge region is subdivided into two matrix discharge regions, each located at the intersection of one Y of the coplanar electrodes and of the address electrode X and one coplanar discharge region between the coplanar electrodes Y, Y′. Each matrix discharge region is located closer to the external edge than the internal edge of the coplanar electrode Y with which the matrix discharge region is associated.
Abstract:
An apparatus and a method for uni-directional and bi-directional transient blocking. The uni-directional apparatus has a depletion mode n-channel device at its input and a normally closed relay, e.g., a micro-electro-mechanical (MEM) relay, interconnected with the depletion mode n-channel device and the input in such a way that at a predetermined current value the transient causes the normally closed relay to switch into an open state and apply a bias voltage Vn on the depletion mode n-channel device that is sufficiently high to switch it “off” thus block the transient. An analogous arrangement at the output taking advantage of the same or a second relay renders the apparatus bi-directional. The structure of the apparatus and the method of operation ensure a reliable and repeatable trip current Itrip and render the apparatus very robust and feasible for low-cost manufacture.
Abstract:
To adjust for differences in service life among light emissive materials used for respective colors by determining the length of a pixel region in the row direction according to the service lives of the light emissive materials. To allow for material change after completion of the laying out process, a light emitting region is formed such that a margin is ensured in the row or column direction within each pixel region.
Abstract:
A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
Abstract:
An organic electroluminescent device includes first and second substrates attached by a seal pattern; array elements including a plurality of switching devices on the first substrate; a color changing medium on a rear surface of the second substrate, wherein the color changing medium has a black matrix that defines sub-pixel regions and has red, green and blue color changing layers respectively corresponding to the sub-pixel regions, a planarizing layer on the color changing medium,; a first electrode on a rear surface of the planarizing layer; an organic electroluminescent layer on a rear surface of the first electrode; second electrodes on a rear surface of the organic electroluminescent layer that correspond to respective sub-pixel regions, and a plurality of electrical connectors between the first and second substrates, wherein electrical connectors connect an array elements on the first substrate to second electrodes on the second substrate, respectively.
Abstract:
A lighting device includes at least one first electrically activated emitter, at least one lumiphor support element comprising a lumiphoric material spatially segregated from the first electrically activated emitter and arranged to receive at least a portion of emissions from the first electrically activated emitter, and at least one second electrically activated emitter disposed on or adjacent to the at least one lumiphor support element. First and second electrically activated emitters having different peak wavelengths may be in conductive with first and second device-scale heat sinks, respectively.
Abstract:
A light emitting device having a straight-line shape is provided with: a pair of first and second electrodes each having a straight-line shape which face each other; and a phosphor layer having a straight-line shape provided so as to be sandwiched between the pair of electrodes, wherein at least one of the pair of first and second electrodes is a transparent electrode, at least one buffer layer is provided so as to be sandwiched between the first or second electrode and the phosphor layer, and the buffer layer makes the height of a potential barrier between the electrode and the phosphor layer which sandwich the buffer layer lower than the height of a Schottky barrier when the electrode and the phosphor layer are brought into direct contact.