Abstract:
The embodiments relate to a rotary anode arrangement with a rotary anode, a rotor for driving the rotary anode and a stator, which exerts a torque on the rotor. The stator includes at least one coil for generating a first magnetic field and at least one permanent magnet for generating a second magnetic field. The embodiments also relate to an X-ray tube with the rotary anode arrangement. The embodiments offer the advantage that a high electromagnetic utilization is possible with a synchronous motor that is excited by permanent magnets.
Abstract:
An x-ray device has a cathode aligned on a target region in a tube housing with a rotating anode unit. The rotating anode unit is borne to rotate around a rotational axis inside the tube housing. The rotating anode unit has a rotating anode plate with the target region and a shaft rotationally connected with the rotating anode plate. A magnetic bearing supports the shaft without contact in the tube housing. The rotating anode plate has an axial extension facing away from the shaft. The axial extension dips into a fluid-filled receptacle space of the tube housing for heat dissipation. Such an x-ray device allows high rotation speeds of the rotating anode unit, and thus a high operational power.
Abstract:
An x-ray tube includes a vacuum enclosure, a shaft having a first end and a second end, a flange attached to the first end of the shaft, the flange having an outer perimeter, and a ferrofluid seal assembly having an inner bore, the inner bore having an outer perimeter smaller than the outer perimeter of the flange. The shaft is inserted through the bore of the ferrofluid seal assembly such that the ferrofluid seal assembly is positioned between the first end of the shaft and the second end of the shaft and such that the first end extends into the vacuum enclosure, and the ferrofluid seal is configured to fluidically seal the vacuum enclosure from an environment into which the second end of the shaft extends.
Abstract:
In exemplary embodiments, the anode is driven by an induction motor, between the stator and rotor of which the wall of the vacuum envelope of the tube is disposed. To reduce the overall length and the lever actions of the weight of the anode which act on the bearing which are disadvantageous in this construction, the disclosure provides an annular anode which is disposed in the same plane with the drive rotor. The rotor and stator can here be surrounded by the ring of the anode or they can be secured externally about the latter. X-ray tubes in accordance with the disclosure are particularly suited for use for the purpose of medical x-ray examination.
Abstract:
The embodiments relate to a rotary anode arrangement with a rotary anode, a rotor for driving the rotary anode and a stator, which exerts a torque on the rotor. The stator includes at least one coil for generating a first magnetic field and at least one permanent magnet for generating a second magnetic field. The embodiments also relate to an X-ray tube with the rotary anode arrangement. The embodiments offer the advantage that a high electromagnetic utilization is possible with a synchronous motor that is excited by permanent magnets.
Abstract:
An x-ray tube includes a vacuum enclosure, a shaft having a first end and a second end, a flange attached to the first end of the shaft, the flange having an outer perimeter, and a ferrofluid seal assembly having an inner bore, the inner bore having an outer perimeter smaller than the outer perimeter of the flange. The shaft is inserted through the bore of the ferrofluid seal assembly such that the ferrofluid seal assembly is positioned between the first end of the shaft and the second end of the shaft and such that the first end extends into the vacuum enclosure, and the ferrofluid seal is configured to fluidically seal the vacuum enclosure from an environment into which the second end of the shaft extends.
Abstract:
The invention is directed to a bearing for the rotating anode of an x-ray tube comprising at least one rolling bearing suitable for absorbing axial forces which is loaded with an axially directed force for suppressing the bearing play. Magnets are provided which generate the axially directed force in non-contacting fashion.
Abstract:
The present invention relates to an X-ray tube with an active balancing arrangement, hi order to provide improved balancing for a minimized imbalance during operation, an X-ray tube (10) with an active balancing arrangement (12) is provided, comprising a rotating anode arrangement (14), a bearing arrangement (20, 22, 24), a driving arrangement (26, 28, 30) for rotating the anode arrangement, an imbalance detection arrangement (32), and active balancing means (34, 36, 38, 40, 42). The bearing arrangement is provided as a fixed bearing of the rotating anode arrangement for supporting the rotating anode arrangement. The imbalance detection arrangement is configured to detect an imbalance of the anode. The active balancing means are electro-magnetic balancing means configured to provide a magnetic field and to apply magnetic eccentricity forces to the rotating arrangement.
Abstract:
An x-ray tube includes a rotatable shaft having a first end and a second end, a target coupled to the first end of the rotatable shaft, the target positioned to generate x-rays toward a subject upon impingement of electrons thereon, and an impeller coupled to the second end of the rotatable shaft and positioned to blow a gas into an inlet of an aperture passing into the rotatable shaft.
Abstract:
An x-ray tube includes a rotatable shaft having a first end and a second end, a target coupled to the first end of the rotatable shaft, the target positioned to generate x-rays toward a subject upon impingement of electrons thereon, and an impeller coupled to the second end of the rotatable shaft and positioned to blow a gas into an inlet of an aperture passing into the rotatable shaft.