Abstract:
In accordance with an example embodiment of the present invention the application discloses a method and an apparatus to receive a signal (501) in a radio device on a radio channel; calculate a plurality of cyclic autocorrelations (504′, 505) for the received signal (501), wherein calculating the plurality of cyclic autocorrelations comprises selecting a cyclic frequency (503) and at least two delay values (502, 512) corresponding to the plurality of cyclic autocorrelations (504′, 505); to compensate a phase offset of at least one of the plurality of cyclic autocorrelations (504′) by at least one compensation term (506) to obtain a plurality of phase compensated autocorrelations (504), wherein the compensation term (506) is dependent on the cyclic frequency (503) and a corresponding delay value of the at least two delay values; and to combine the plurality of phase compensated autocorrelations.
Abstract:
A system and method of cognitive radio control to allow for low probability of detection and/or low probability of exploitation communications in a contested or hostile environment. The cognitive radio system of the present disclosure can reason over policy constraints and real-time data to make dynamic changes to mission parameters in real-time.
Abstract:
Various examples of the present disclosure describe a random access method and device in a CR system. The method includes: generating, by a base station device, a spectrum handover command, wherein the spectrum handover command comprises random access backoff time parameter information; and sending, by the base station device, the spectrum handover command to a user equipment in a cell to instruct the UE to initiate, during a spectrum handover procedure, a random access procedure using the random access backoff time parameter information. According to the various examples of the present disclosure, the random access backoff time parameter information is carried in the spectrum handover command, so that a random access conflict is suppressed during the spectrum handover procedure of the CR system. A large number of UEs that intensively perform random access on a target working frequency are pre-dispersed in time. As such, the delay and the failure probability of the random access on the target working frequency during the spectrum handover procedure are reduced, and thus the failure probability of the spectrum handover and the service interruption time are reduced, so that the user experience of the CR system is improved.
Abstract:
In accordance with an example embodiment of the present invention the application discloses a method and an apparatus to receive a signal (501) in a radio device on a radio channel; calculate a plurality of cyclic autocorrelations (504′, 505) for the received signal (501), wherein calculating the plurality of cyclic autocorrelations comprises selecting a cyclic frequency (503) and at least two delay values (502, 512) corresponding to the plurality of cyclic autocorrelations (504′, 505); to compensate a phase offset of at least one of the plurality of cyclic autocorrelations (504′) by at least one compensation term (506) to obtain a plurality of phase compensated autocorrelations (504), wherein the compensation term (506) is dependent on the cyclic frequency (503) and a corresponding delay value of the at least two delay values; and to combine the plurality of phase compensated autocorrelations.
Abstract:
There is provided a computer-implemented method for transmitting data over a wireless network using white spaces. A first white space transmission channel is determined for communicating with mobile client devices. Wireless communication takes place with the mobile client devices over the first white space transmission channel. If the first white space transmission channel becomes unavailable to one of the mobile client devices because of the presence of a primary user on the first white space transmission channel, a different white space transmission channel is determined for communicating with the mobile client device that is affected. The first white space transmission channel may become unavailable to the affected mobile client device, for example, because a primary user begins using the first white space transmission channel in proximity to the affected device. The primary user may be a wireless microphone. Thereafter, communication with the affected wireless device takes place on the different white space transmission channel, while unaffected devices continue to communicate on the first white space transmission channel. Also provided are an exemplary wireless base station and an exemplary mobile client device.
Abstract:
The peak detection method using blind source separation extracts true peaks from noisy peaks in a more robust way that does not require any a priori information. Information regarding true peak location is obtained by thresholding the output of a wavelet transform. The value of the threshold is dependent on noise variance. While noise variance is normally unknown, the present method implements a blind source separation technique to calculate the noise variance. The blind source separation technique does not require information of the incoming signal or the channel noise, and hence is suitable for CR (cognitive radio) peak detection.
Abstract:
The peak detection method using blind source separation extracts true peaks from noisy peaks in a more robust way that does not require any a priori information. Information regarding true peak location is obtained by thresholding the output of a wavelet transform. The value of the threshold is dependent on noise variance. While noise variance is normally unknown, the present method implements a blind source separation technique to calculate the noise variance. The blind source separation technique does not require information of the incoming signal or the channel noise, and hence is suitable for CR (cognitive radio) peak detection.
Abstract:
Technologies are generally described for cognitive radio spectrum sensing via Code Division Multiple Access (CDMA) receiver coding. A CDMA module in the front-end of a cognitive radio system may be used to sense spectrum. When the system is not decoding or transmitting signals, a modified CDMA receiver coding may replace a pseudorandom code used in decoding with relatively pure, non-random detection frequency to scan for energy from primary users of the spectrum. Multiplication of the received signal by spectrally pure codes in place of the CDMA code renders the CDMA processor effectively a scanning spectrum analyzer and may detect energy at multiple frequencies. The allocation of sub-bands and/or timing may be adjusted to account for the detected energy.
Abstract:
Systems and methods for cognitive radio spectrum sensing of a signal are disclosed herein. On exemplary method comprises applying a pre-defined cyclostationary feature to detect the presence of the signal; detecting the signal; detecting a spectrum associated with the signal; sampling randomly the detected signal from its cyclic frequency domain; and applying a compressive sensing algorithm to classify the signal based on the cyclostationary feature. The signal can be sparse in time, space, frequency, or code domains. Thereby, the systems and methods described in the present disclosure involve exploiting compressive sensing in a specific sparse domain (i.e., cyclic domain) and also utilize a cyclostationary feature based compressive spectrum sensing scheme to perform spectrum analysis.
Abstract:
Various examples of the present disclosure describe a random access method and device in a CR system. The method includes: generating, by a base station device, a spectrum handover command, wherein the spectrum handover command comprises random access backoff time parameter information; and sending, by the base station device, the spectrum handover command to a user equipment in a cell to instruct the UE to initiate, during a spectrum handover procedure, a random access procedure using the random access backoff time parameter information. According to the various examples of the present disclosure, the random access backoff time parameter information is carried in the spectrum handover command, so that a random access conflict is suppressed during the spectrum handover procedure of the CR system. A large number of UEs that intensively perform random access on a target working frequency are pre-dispersed in time. As such, the delay and the failure probability of the random access on the target working frequency during the spectrum handover procedure are reduced, and thus the failure probability of the spectrum handover and the service interruption time are reduced, so that the user experience of the CR system is improved.