摘要:
A diode model and conductive-probe measurements taken at the wafer lever are used to predict the characterization parameters of a semiconductor device manufactured from the wafer. A current-voltage curve (I-V) model that expresses a current-voltage relationship as a function of resistance, ideality factor, and reverse saturation current is fitted to a number of conductive-probe measurement data. The current-voltage curve (I-Vd) for the device is then estimated by subtracting from the (I-V) model the product of current times the resistance produced by fitting the (I-V) model.
摘要:
To provide a sensor device which is capable of high temperature detection using self-heat generation without providing a dedicated terminal and suppresses an increase in cost with an increase in chip occupation area due to the addition of a test pad. A sensor device is configured to include an active logic switching circuit for switching an active logic of an output driver and perform a heating inspection while switching the active logic of the output driver during an inspection process with the output driver as a heat generation source.
摘要:
A diode model and conductive-probe measurements taken at the wafer lever are used to predict the characterization parameters of a semiconductor device manufactured from the wafer. A current-voltage curve (I-V) model that expresses a current-voltage relationship as a function of resistance, ideality factor, and reverse saturation current is fitted to a number of conductive-probe measurement data. The current-voltage curve (I-Vd) for the device is then estimated by subtracting from the (I-V) model the product of current times the resistance produced by fitting the (I-V) model.
摘要:
Forward voltage drift in a probe system for the characterization of a light-emitting wafer is virtually eliminated by directing compressed air to the probe so as to ensure that the exact same temperature conditions exist during repeated measurements of the wafer. In one embodiment of the invention, an air flow at room temperature is used, either continuously or intermittently. In another embodiment, the temperature of the probe is controlled by flowing a liquid or a gas through micro-channels built into the probe. In yet another embodiment, the probe is connected to a solid-state Peltier cell that is computer-controlled to maintain the probe's temperature at a predetermined set-point. A temperature-controlled chamber or a thermal reservoir enclosing the probe could be used as well. The results obtained showed remarkable repeatability.
摘要:
To provide a sensor device which is capable of high temperature detection using self-heat generation without providing a dedicated terminal and suppresses an increase in cost with an increase in chip occupation area due to the addition of a test pad. A sensor device is configured to include an active logic switching circuit for switching an active logic of an output driver and perform a heating inspection while switching the active logic of the output driver during an inspection process with the output driver as a heat generation source.
摘要:
Forward voltage drift in a probe system for the characterization of a light-emitting wafer is virtually eliminated by directing compressed air to the probe so as to ensure that the exact same temperature conditions exist during repeated measurements of the wafer. In one embodiment of the invention, an air flow at room temperature is used, either continuously or intermittently. In another embodiment, the temperature of the probe is controlled by flowing a liquid or a gas through micro-channels built into the probe. In yet another embodiment, the probe is connected to a solid-state Peltier cell that is computer-controlled to maintain the probe's temperature at a predetermined set-point. A temperature-controlled chamber or a thermal reservoir enclosing the probe could be used as well. The results obtained showed remarkable repeatability.