Abstract:
Crop-specific automated irrigation include environmental medium and management of nutrients. Operation of an irrigation apparatus can be regulated according to specific water demand of a crop. The water demand can be assessed by evaluating water content conditions of the environmental medium comprising the crop, medium characteristics, and/or nutrient delivery and transport characteristics at the medium. Regulation of operation of the irrigation apparatus can comprise control of one or more of water supply to the apparatus, positioning and/or movement of the irrigation apparatus, or configuration of sensing devices for collection of information suitable for such regulation.
Abstract:
Irrigation of plants or crops is effected using plant canopy temperature measurements. The process and device include an irrigation scheduling algorithm based on an integrated water stress index (WSI) and an integrated WSI set-point. A WSI is calculated at repeated time intervals and compared to an encoded threshold WSI value that is crop and region specific. If the calculated WSI is greater than the encoded WSI value, a unit of integrated WSI (IWSI) is accumulated. If the time integral exceeds the encoded value for a 24 hour period, an irrigation signal is produced, directing the irrigation system where, when and how much to irrigate. The process and device will automatically schedule crop irrigations when the crop is water stressed and may control a moving or static irrigation system to apply the irrigation. Moreover, irrigation applications can be selectively varied over specified control areas or management zones.
Abstract:
A system includes a data acquisition device that includes one or more sensors. The data acquisition device collects sensor data from the one or more sensors that measure one or more of the following: irrigation flow rate, irrigation water quality, intensity of solar radiation, ambient temperature, and ambient humidity. The system further includes a user interface module that collects condition data from a user. The system further includes a collection and analysis application that receives the sensor data from the data acquisition device, receives the condition data from the user interface module, analyzes the sensor data and the condition data, and generates analyzed data from the sensor data and the condition data. The user interface module generates a user interface that includes the analyzed data from the collection and analysis application.
Abstract:
A system and method to use remote sensing to estimate crop water use that is forecasted and is updated as weather and new satellite data become available. From these data the system and method uses a water accounting algorithm to prescribe irrigation differentially for regions of a field or for the entire field as an average. Irrigation prescription is delivered remotely through Internet technology.
Abstract:
A system and method are provided for managing some or all of an agricultural ecosystem. In one example, the method includes obtaining a current soil moisture level for multiple zones at a geographic location, where each of the zones has been assigned a desired minimum soil moisture level. The zones are ranked in a watering schedule based on a delta between the current soil moisture level and the desired minimum soil moisture level of each zone. For each zone, in the order based on the zone's ranking, at least one valve is opened to deliver water to the zone and closed after watering of the zone is completed. The water may be delivered based on time or volume. If by volume, the volume needed by the zone is calculated.
Abstract:
A system and method to use remote sensing to estimate crop water use that is forecasted and is updated as weather and new satellite data become available. From these data the system and method uses a water accounting algorithm to prescribe irrigation differentially for regions of a field or for the entire field as an average. Irrigation prescription is delivered remotely through Internet technology.
Abstract:
A system and method for efficiently delivering an aqueous solution to plants includes a microporous hydrophobic tubing coated with a hydrophilic polymer that has a delivery portion positionable adjacent a root system of a plant and a lumen for channeling an aqueous solution from an inlet to the delivery portion. The tubing along the delivery portion has a porosity adapted for permitting a flow of the aqueous solution therethrough when acted upon by a surfactant root exudate generated by the roots due to water stress. A pressure regulating device is upstream of the tubing's inlet, and a reservoir adapted for holding the aqueous solution therein is situated in fluid communication with an upstream end of the pressure regulating device. Additional tubing can be provided for channeling a nutrient solution to the plant roots.
Abstract:
A system and method for efficiently delivering an aqueous solution to plants includes a microporous hydrophobic tubing coated with a hydrophilic polymer that has a distal portion positionable adjacent a root system of a plant and a lumen for channeling an aqueous solution from an inlet to the distal portion. The tubing along the distal portion has a porosity adapted for permitting a flow of the aqueous solution therethrough when acted upon by a surfactant root exudate generated by the roots due to water stress. A pressure regulating device is upstream of the tubing's inlet, and a reservoir adapted for holding the aqueous solution therein is situated in fluid communication with an upstream end of the pressure regulating device. Additional tubing can be provided for channeling a nutrient solution to the plant roots.
Abstract:
The present invention is a method of controlling an irrigation system that minimizes the use of irrigation water comprising defining a stop time for each watering event that is as late as possible to maximize the statistical contribution of predicted or actual rainfall to the proper watering of crops or turf. High rain probabilities cause deferral of the watering event. The present invention includes the embodiments of watering the largest water volume/water flow rate zone last, measuring the actual water applied and using mathematical curve-fitting techniques incorporating historical data from recent watering events to calculate actual plant/soil response to applied water for each irrigated zone.
Abstract:
Disclosed herein are a system and method that integrate vineyard sensor data into an environment that enables analysis, historical trend analytics, spatio-temporal analytics, and weather model fusion for improved decision making from vineyard management to wine production. The integration of new sensor data from multiple soil depths with surface measurements, combined with production flow process and historical information enables new decision making capabilities. A wireless network of sensor/transmitters can be distributed to provide a 3-dimensional assessment of water movement both across the grower's field and as it moves from the surface through the root zone. The soil monitoring data stream feeds into a visualization interface that will be incorporated in software based decision aid and crop management tool that helps agricultural producers reduce costs, minimize water and nutrient applications, and better protect the environment by reducing agricultural production inputs.