摘要:
An apparatus and method for extracting energy for a tidal stream in a body of the water are described. The apparatus comprises a body located in a tidal stream, a generator; and a line coupled to the generator such that relative movement between the line and the generator drives the generator. In one configuration, the body comprises a drag surface oriented substantially in the direction of the tidal stream and has at least one formation for promoting a drag force on the body. The drag force causes movement of the body with the tidal stream, which results in relative movement of the line and generator to drive the generator.
摘要:
A device is described for the conversion of energy from free flowing water into electric, hydraulic, or pneumatic power using a submersible system of turbine propellers mounted on horizontal shafts supported by chambers, each containing switchgear and/or generators and air or water ballast. The device is tethered to the seabed by a cable. Free of a rigid vertical support, the device can yaw so that water flow in any direction can be used for power generation, as in a tidal basin. In response to sensing the water velocity of the water channel, the device actively seeks a nominal water velocity, ascending or descending as necessary.
摘要:
Apparatus for generating power from a water current in a body of water comprises a longitudinally extending flotation platform for maintaining the apparatus afloat in the body of water and a water turbine operatively carried by the platform for generating power in response to water current in the body of water. The platform is configured to enhance the flow of water current over the turbine blades and, as well, to enable a number of like platforms each with an associated turbine or turbines to be arrayed in a cooperative manner. The water turbine may comprise a turbine rotor with a plurality of relatively narrow, flexible elongated blades arranged in circumferentially spaced rows extending along the rotor. In each row, the blades are distanced from each other in succession by a space. The rows may be staggered with respect to each other such that the blades in a given one of the rows circumferentially align with the spaces between blades in the row immediately circumferentially forward of the given row and with the spaces between blades in the row immediately circumferentially rearward of the given row.
摘要:
A floating power generation assembly comprises at least three floating units (900) floating on a body of water, and at least three anchors (916) secured to a solid surface beneath the body of water, each of the floating units (900) being provided with power generation means, the floating units (900) being arranged substantially at the vertices of at least one equilateral triangle. The invention also provides ship-borne apparatus for deploying the floating units of such a power generation assembly and a novel multiple wind turbine assembly.
摘要:
A method and means of counteracting the effects of variation in static pressure acting upon a hollow rotor blade or hydrofoil (6, 7) for devices capable of extracting energy from a moving column (8) of water or other liquid within which the rotor of hydrofoil is located whether the device rotates as in the case of an axial flow turbine or whether it reciprocates in the flow such that cyclic static pressure fluctuations caused by vertical movement of the rotor blades or hydrofoils through the water column (8) including the step of equalising the pressure inside and outside the rotor blade or hydrofoil by filling any voids (17) within the hollow rotor blades or hydrofoils with a liquid in such manner as to allow the external surface (26) of said rotor blades or hydrofoils to “breathe”; i.e., to expand and contract under the influence of external static pressure variations, whereby cyclic static pressure fluctuations caused by vertical movement of the rotor blades or hydrofoils through the water column (8) do not cause fluctuating stresses in the rotor blades or hydrofoils.
摘要:
A wind turbine blade made of a fixed blade section with an integral mounting flange for attachment to a wind turbine hub. A moveable blade section is attached to the fixed blade section and is free to move in a longitudinal direction relative to the fixed blade section. A positioning device controllably positions the moveable blade section to vary the overall length of the blade. This allows the wind turbine's rotor diameter to be adjusted. The rotor diameter can be increased in order to provide high power output in low wind conditions and it can be decreased in order to minimize loads in high wind conditions.
摘要:
A fluid power storage device is provided in which, the prime mover directly or through a slow-down gear train winds up a spring device having a latch attached therein. The spring device can be a spiral spring or simply a rubber band. When the stored up energy is great enough, an adjustable stopper automatically releases the spring device being latched. The spring device in turn, releases the stored energy which then activates a mechanism or drives an electric generator. After a certain amount of energy stored up is released, the latch will automatically be caught by the stopper. Hence the mechanism or the electric generator will be stopped and the fluid power storage device starts to store up energy again for the next release of the spring device.
摘要:
A wind driven electrical power generating apparatus includes an armature. The apparatus also includes a wing secured to the armature. The wing defines a pocket having a hub end and an outer end. The width of the pocket monotonically increases from the hub end to the outer end. Moreover, the depth of the pocket monotonically increases from the hub end to the outer end. The wing and the armature produce a relatively large amount of torque during rotation of the armature which is converted to high rotational speed by a gear mechanism thereby driving a generator at a relatively high rotational speed. Such high torque production eliminates the need to rotate the armature at a high rotational speed. Moreover, the configuration of the wing allows the armature to be rotated in the presence of relatively low wind velocities. Hence, the apparatus may be efficiently utilized for electrical power generation in geographic areas which typically experience relatively low wind velocities.
摘要:
Water-powered electricity generating apparatus, for use in rivers and other bodies of water having current flow therein, comprises a water wheel and an adjacent platform. The water wheel has a number of blades which are pivotally attached adjacent a first end thereof to vertical rods which extend between the top and bottom of the water wheel. A controllable stop, movable between an upper position in which it may contact a second end of the blade, and a lower position in which contact with the blade is not possible, is provided for each blade. The wheel also comprises a drive gear having downwardly-facing teeth. The drive gear meshes with gears of dynamos carried on the platform adjacent the water wheel.The apparatus is placed in a river or other body of water having current therein. When traveling in an upstream direction, the blades swing freely parallel to the current. When traveling in a downstream direction, the second ends of the blades rest against the stops, and the blade presents a surface against which the current acts to turn the wheel. The wheel, powered by the blades in contact with the stops, and unhindered by the other blades, rotates continuously in one direction. Rotation of the wheel causes the drive gear to rotate, which causes the dynamo gears to rotate causing the dynamos to produce electricity.
摘要:
A wind-driven electric current-producer has a magnetic field producing alternator rotor directly driven by an air turbine blade. The alternator and blade together are mounted on a vertically tiltable control frame which is pivotably mounted on a main frame that swivels with the wind direction in response to a guide vane. In high winds the blade and alternator tilt upward but continue to aim into the wind and produce current. The guide vane is low to accomodate the tilted blade path. The location of the pivot causes gravitational forces to tilt the control frame in both directions. Springs counterbalance the upward tilting forces. The spring mounts have a stop that limits the tilt in both directions.