摘要:
A method comprising: (a). providing a device comprising: a movable table having a movement gage; a gage for measuring a dimension of one or more bearing blanks; and a machining tool for machining the one or more bearing blanks; (b). prompting a user to input one or more process variables; (c). supplying the one or more bearing blank into the device; (d). moving the bearing blank to a table grinding position; and (e). measuring the dimension of the one or more bearing blanks using the gage; (f). measuring a distance moved by the movable table so that a reference measurement is provided; and (g). comparing the measurement of step (e) to the reference measurement of step (f).
摘要:
In a method for producing an extruded bearing journal, the bearing journal is extruded in an extrusion tool by means of at least one extrusion punch and, after the extrusion of the bearing journal, reworking of the bearing journal is performed in order to improve the cylindricity of the bearing journal at least over a section of the longitudinal extent of the bearing journal. During the reworking, the bearing journal is arranged, at least over a section of its longitudinal extent adjoining its free end, in a cavity that is delimited in a radial direction of the bearing journal by a wall surface surrounding the lateral surface of the bearing journal, and a reworking punch which is movable in the longitudinal direction of the bearing journal is moved toward the free end of the bearing journal and is pressed against the face surface of the bearing journal and, in this way, a plastic deformation of the bearing journal, with a flow of material of the bearing journal, is effected.
摘要:
The present disclosure provides a bushing for promoting fluid transfer between a first body and a second body. The bushing includes a cylindrical sleeve including an inner surface and an outer surface. A groove is formed in the inner surface and defined by a first wall and a second wall. A plurality of openings is defined in the groove, such that the plurality of openings is radially spaced from one another.
摘要:
A method of replacing eccentric bushings installed on the gangheads of machine tools for adjusting a machining operation. The machine tools, which are used to machine or otherwise process parts, utilize the eccentric bushings for applying fine adjustments to the machining by adjusting the location of the machining operation in a plane using the orientation and amount of eccentricity of the bushing. Also the apparatuses provided for supporting this method.
摘要:
An inner periphery of a molded part having a step from an inner periphery of an electroformed part is molded to a nonconductive coating which covers the surface of a master. When the nonconductive coating is removed, a radial clearance having a diameter greater than that of a bearing clearance is created between the inner periphery of the molded part, which is exposed to the interior, and an outer periphery of a shaft member. A bearing member which forms the bearing and radial clearance with the shaft member is manufactured by performing electroforming on the master with the nonconductive coating formed on part of the surface of the master, thereby forming the electroformed part; then injection molding the bearing member with the electroformed part and the nonconductive coating on the surface of the master inserted into a cavity; and then removing the nonconductive coating from the bearing member.
摘要:
A bushing has a body with a cylindrical shape, an axis, and a plurality of dimples formed in the body extending in a radial direction with respect to the axis. The body is electrically conductive. A sliding layer that is electrically non-conductive is formed on at least a portion of the body. A coating that is electrically non-conductive is formed on at least a portion of the body. The bushing has an uninstalled configuration where the bushing is electrically non-conductive, and an installed configuration where the bushing is electrically conductive.
摘要:
A sleeve bearing is provided. The sleeve bearing comprises a bearing retainer including an outer surface and an inner surface, wherein the inner surface forms a retaining bore, a bearing insert including an outside surface and an inside surface, wherein the inside surface forms a shaft bore, and wherein the bearing insert is coupled to the bearing retainer.
摘要:
A manufacturing method of a bearing according to the present invention includes a bearing forming member preparing step S10 for preparing a bearing forming member W made of AlSi alloy containing 5 weight % to 40 weight % of Si, a pressure sizing step S20 which decreases a maximum crest height Rp of a bearing surface 132 by performing pressure sizing of the bearing surface 132 of the bearing forming member W, and an aluminum oxide film forming step S30 for forming an aluminum oxide film 36 on the bearing surface 132 of the bearing forming member W by anodizing the bearing surface 132 of the bearing forming member W in this order. According to the manufacturing method of a bearing of the present invention, it is possible to manufacture a bearing which can maintain the bearing performance over a long period.
摘要:
A sleeve bearing assembly and method of construction therefore has an inner portion constructed from a plurality of yarns to provide a journal bearing surface for receipt of a journal for relative movement therein and an elastic outer portion injection molded at least partially about the inner portion. The plurality of yarns are woven together with at least some of the yarns being woven in a warp direction corresponding to a length of the journal bearing surface and in a weft direction corresponding to a circumferential direction of the journal bearing surface to form a backing of the inner portion. At least one of the plurality of yarns is provided as a self-lubricating yarn woven with the backing in a weft direction to substantially form the bearing surface radially inwardly of the backing.
摘要:
A dynamic bearing manufacturing includes steps of: providing a bearing and a processing tool, the bearing having an axial hole, and the processing tool having at least one protruding pattern formed on an exterior wall of the processing tool; positioning the processing tool into the axial hole of the bearing; pressing the processing tool to contact with an inner wall of the bearing so as to transfer and print the protruding pattern of the processing tool onto the inner wall of the bearing; rotating the processing tool at a first rotation speed and driving the bearing to rotate at a second rotation speed; and forming at least one concave pattern on the inner wall of the bearing, and the at least one concave pattern being corresponding to the protruding pattern of the processing tool.