Abstract:
One pair each of a Y linear motor (a total of four) on the +X side and the −X side that drive a reticle stage include one pair each of a stator section (a total of four) and three each of a mover section (a total of six) on the +X side and the −X side. In this case, the three each of the mover sections on the +X side and the −X side configure one each of a mover. The mover section located in the center in the Z-axis direction of each of the movers is used in common by each pair of the Y linear motors. Therefore, the weight of the mover section (reticle stage) of the reticle stage device is reduced, which allows a higher acceleration. Further, the mover section located in the center in the Z-axis direction of each of the movers coincides with a neutral plane of the reticle stage.
Abstract:
The invention includes: a base; a table supported by the base; a tubular rod connected to a side of the table via a joint; a drive mechanism that moves the rod forward and backward; and a laser interferometer that detects displacement of the table relative to the base. The joint is provided by a supplying-discharging static-pressure joint and includes: a movement surface that is connected to the table and is orthogonal to a moving direction of the table; a drive surface that is connected to the rod and faces the movement surface; and a fluid supply channel supplying fluid to a static-pressure clearance between the movement surface and the drive surface. The laser interferometer includes a laser path having an optical axis along the moving direction passing through the inside of the rod of which a pressure is reduced and the drive surface and reflect on the movement surface.
Abstract:
Systems and methods are disclosed for x-y tables wherein rolling elements of rolling-element bearings are transferring electrical energy between a fixed part of the x-y table and a movable part of the x-y table. The electrical energy transferred could be power to electrical devices as well as signals to and from devices on the movable part of the x-y table. Electrically conducting rolling elements are moving on electrically conducting grooves on the fixed and movable part of the x-y table. Conductor tracks on the fixed and movable part are connected to the grooves and to devices on the movable platform. In a preferred embodiment of the invention the x-y table is part of a camera wherein linear motors, preferably with integrated position sensing, are moving the x-y table back to a home position in case of a dislocation due to a mechanical shock. The invention allows an exact and fast positioning of an x-y table without requiring a flexible cable. The rolling-element bearings could be ball bearings, roller bearings, needle bearings, or other kind of bearings having electrically conductive rolling elements.
Abstract:
A guide includes a brittle material layer and a magnetically attracting magnetic body, e.g., a metal layer. A recess and a projection are formed on the metal layer. The brittle material layer is made of, e.g., a sprayed ceramic material and covers the recess formed on the magnetically attracting metal layer. A movable body moves as it levitates above the surface of the brittle material layer.
Abstract:
A machine tool comprises a first travelling assembly (10) which carries in its turn a second travelling assembly (22). The first assembly (10) is adapted to position the second assembly (22) in a relatively wide space (S1) and with movements at relatively low speeds and accelerations. The second assembly (22) carries in its turn a tool which is provided with actuators for positioning the tool in a relatively narrow space (S2) and with movements at relatively high speeds and accelerations. The machine includes means for controlling the movements of the two assemblies (10, 22) which are so arranged to obtain s global movement of the tool without solutions of continuity in all the space of movement (S1) of the first assembly (10). The invention also relates to a manipulator device which can be used independently or be installed as a second assembly (22) on a travelling structure of a machine tool.
Abstract:
A supporting unit in a moving table device, easily connected to a base and a table, is provided. A supporting unit (Uα) has a pair of planar bearing plates. Inside the planar bearing plates are positioned spherical bearing plates, respectively. Further, a spherical axial member is sandwiched between the spherical bearing plates (34a, 34b). A planar bearing is formed between each of the planar bearing plates and each of the spherical bearing plates. A spherical bearing is formed between each of the spherical bearing plates and the spherical axial member. Thus, the supporting unit (Uα) is provided with a certain degree of movability in five-axis directions. With the high degree of movability, the supporting unit (Uα) can be easily connected to a base and a table.
Abstract:
An actuator system for making a nanoscale movement of an object is provided. In the actuator system, a platform supports the object. A Z-axis actuator connects the platform to the object in a Z-axis direction, and moves the object in the Z-axis direction by Z-axis direction transformation. A frame supports the platform around the platform. An X-axis actuator connects the frame to the platform in an X-axis or Y-axis direction perpendicular to the Z-axis, and moves the object in the X-axis direction by transformation in the direction perpendicular to the Z-axis.
Abstract:
In order to improve a machine tool for machining a workpiece by a relative movement between the workpiece and a tool, comprising a first receiving device for the workpiece or the tool, a compound slide system with a second receiving device for the tool or the workpiece and comprising a drive device for moving the second receiving device in relation to the first receiving device, which drive device acts at at least two spaced-apart points of application by at least three drive struts extending parallel to at least two different directions and each with a pivot joint, and with which drive device the at least two points of application can be positioned by means of the at least three drive struts, in such a way that exact positioning of the second slide element can be achieved by structural measures, it is proposed that four drive struts of invariant length, each with a pivot joint, act on the slide element, each of which struts is pivotally connected to a guiding slide, which is guided in a linearly movable manner transversely in relation to the longitudinal direction of the respective drive struts, and a maximum of two of which drive struts run parallel to one another.
Abstract:
An alignment apparatus which moves a object comprises a first structure having a holding member which holds the object, a second structure having a magnet which constitutes a linear motor, the linear motor drives the first and second structure, and a flow passage formed between the holding member and the magnet.
Abstract:
A magnetic transmission having an input shaft and an output shaft with two or more gear assemblies, each gear assembly having an input sprocket affixed to the input shaft, an output armature with peripheral electromagnets affixed to the output shaft, a transfer drum concentric with the output armature and having electromagnets inset from the inside surface of the transfer drum and a drum sprocket on the periphery of the transfer drum, and a transfer chain engaging the input sprocket and the drum sprocket. A gear assembly actuator is used to select and energize a desired gear assembly. A hysteresis clutch can also be used in lieu of the output armature and the transfer drum.