Abstract:
A wheel suspension, in particular an independent wheel suspension, having active adjustment of the wheel camber. An intermediate carrier is arranged between the hub carrier holding the wheel and the body-side wheel suspension, in particular the wheel suspension links. The intermediate carrier is linked to the wheel suspension on the body side and has a pivot axis running in the longitudinal direction of the vehicle.
Abstract:
A vehicular suspension device comprises a wheel carrier which is articulated relative to the suspension elements. This connection is provided by rigid connection rods. This additional degree of freedom permits variation of the camber angle independently of the suspension spring movement and of the deformations of its elements. The variation of the camber is preferably controlled by the forces sustained by the wheel in the ground contact area of the tire. This is obtained by a configuration in which the movements of the wheel relative to the body of the vehicle allow an instantaneous center of rotation which is situated beneath the plane of the ground.
Abstract:
An adjustable suspension system includes a torsion spring, four Scott-Russell linkages for each wheel of the vehicle, and a worm gear for rotating the torsion spring. At least one of the Scott-Russell linkages for each wheel is responsive to the torsion spring to adjust the ride height of the vehicle while maintaining a substantially constant camber angle for the wheel. In one exemplary method for adjusting the ride height of a vehicle, a dynamic parameter of the vehicle is sensed and, based on the sensed dynamic parameter, the torsion spring is automatically rotated to change the orientation of the Scott-Russell linkages and thereby adjust the ride height of the vehicle. The dynamic parameter may be the speed of the vehicle, the pitch and body roll of the vehicle, or the lateral acceleration of the vehicle. The operation of automatically rotating the torsion spring may be controlled by a microprocessor.
Abstract:
The invention relates to a camber control suspension of a vehicle that can form a stable camber angle even at the time when the vehicle rolls as well as when bumping and rebounding, including a camber control rack and camber control links which function to control camber of wheels by stopping or moving according to the vertical motion of both wheels. As a result, a most stable ground contact state of the tires at all times is achieved to sufficiently enhance the groiund contact force of the tires at any running state of the vehicle.
Abstract:
A motor vehicle fitted with a system for controlling the camber (&thgr;) of the wheels of the vehicle on a bend, including, for each wheel of at least one front axle and/or rear axle of the vehicle, a suspension having a pair of suspension upper and lower arms, articulated at their outboard ends to a hub carrier and attached at their inboard ends to the body of the vehicle. The lower and upper arms of each pair are articulated at their respective inboard ends to a pivot transfer lever which is, in turn, mounted on the body by an articulation, the axis of rotation of which is contained in a longitudinal and vertical plane of the vehicle, the pivot transfer lever being capable of pivoting in such a way as to incline the wheels on the appropriate side.
Abstract:
A wheel suspension, in particular an independent wheel suspension, having active adjustment of the wheel camber. An intermediate carrier is arranged between the hub carrier holding the wheel and the body-side wheel suspension, in particular the wheel suspension links. The intermediate carrier is linked to the wheel suspension on the body side and has a pivot axis running in the longitudinal direction of the vehicle.