Abstract:
A monorail vehicle includes a chassis supporting a vehicle body that includes a passenger floor, a first side wall, and a second side wall and first and second propulsion systems. Each propulsion system includes an electric motor and a drive wheel coupled to a rotor of the electric motor. Each electric motor and the drive wheel coupled to the rotor of the electric motor are positioned on both sides of an imaginary plane extension of the passenger floor. First and second shells cover portions of the first and second propulsion system. The first shell is positioned proximate to the first side wall and defines a first space between the second side wall. The second shell is positioned proximate to the second side wall and defines a second space between the first side wall.
Abstract:
The present invention relates to a power supply and pickup system capable of maintaining stability of transmission efficiency despite changes in a resonant frequency. More particularly, the present invention relates to a power supply and pickup system capable of maintaining the stability of efficiency of transmitting power to a pickup device from a power supply device even when a voltage or current changes by the variation in a resonant frequency. According to the power supply and pickup system of the present invention, Q-factor of a power supply and pickup system is set to a low value, a stability of efficiency of transmitting power to a pickup device from a power supply device is maintained even when a voltage of current changes by the variation in a resonant frequency.
Abstract:
The present invention relates to a power supply and pickup system capable of maintaining stability of transmission efficiency despite changes in a resonant frequency. More particularly, the present invention relates to a power supply and pickup system capable of maintaining the stability of efficiency of transmitting power to a pickup device from a power supply device even when a voltage or current changes by the variation in a resonant frequency. According to the power supply and pickup system of the present invention, Q-factor of a power supply and pickup system is set to a low value, a stability of efficiency of transmitting power to a pickup device from a power supply device is maintained even when a voltage of current changes by the variation in a resonant frequency.
Abstract:
A monorail vehicle includes a chassis supporting a vehicle body, that includes a passenger floor and at least one side wall, and an electrical motor supported by the chassis. A drive wheel is coupled to a rotor of the electric motor with a rotation axis of the drive wheel substantially coaxial with an axis of the rotor. Portions of the drive wheel and the electric motor are positioned on both sides of an imaginary plane extension of the passenger floor. The drive wheel and the electric motor are covered by a shell that is integral to one side of the vehicle body and which defines a space between the other side of the vehicle body.
Abstract:
A power conversion device according to an embodiment includes a converter unit, and an inverter unit disposed to be adjacent to the converter unit in a railroad car running direction, the inverter unit being configured to convert the DC power outputted from the converter unit to AC power. First radiation fins are attached to a surface of a first heat receiving plate opposite to a surface on which the semiconductor switching devices are attached, and second radiation fins are attached to a surface of a second heat receiving plate opposite to a surface on which the semiconductor switching devices are attached. The first radiation fins and the second radiation fins facing one another are attached to the first heat receiving plate and the second heat receiving plate so that recessed portions of the first radiation fins and recessed portions the second radiation fins are aligned with one another.
Abstract:
A traction system in voltage mode includes power supply buses of an electric traction vehicle, the power supply buses each including a 2F filter with the midpoints of the 2F filters being linked together.
Abstract:
A power converter (10) for operating a first electric machine (12) and a second electric machine (14), comprising: a first converter element (16), a second converter element (18) and a first terminal connection (21), a second terminal connection (22) and a third terminal connection (23) for connecting the power converter (10) to a three-phase energy supply (60), wherein the first converter element (16) comprises a first rectifier circuit (31) and a second rectifier circuit (32), the second converter element (18) comprises a third rectifier circuit (33), wherein the first rectifier circuit (31) has a first AC-side pole (51) and a second AC-side pole (52), the second rectifier circuit (32) has a third AC-side pole (53) and a fourth AC-side pole (54) and the third rectifier circuit (33) has a fifth AC-side pole (55) and a sixth AC-side pole (56), the first rectifier circuit (31) and the second rectifier circuit (32) are connected in parallel on the DC-voltage side and are connected to a common first DC-voltage-side pole (41) and a common second DC-voltage-side pole (42), wherein the third rectifier circuit (33) is connected on the DC-voltage side to a third DC-voltage-side pole (43) and a fourth DC-voltage-side pole (44), wherein the first DC-voltage-side pole (41) is at least connectable to the third DC-voltage-side pole (43) by means of a first current path (36) and the second DC-voltage-side pole (42) is at least connectable to the fourth DC-voltage-side pole (44) by means of a second current path (37), wherein at least the first current path (36) or the second current path (37) comprises a semiconductor switch (64).
Abstract:
A vehicle electrical system for a rail vehicle includes a bus bar, an energy supply unit for feeding electrical energy to the bus bar, a bus bar supply line which is connected to an output side of the energy supply unit and to the bus bar and has a switch, an auxiliary system and a first auxiliary system supply line connected to the bus bar and to the auxiliary system. In order to make it possible to reliably supply the auxiliary system with electrical energy, the vehicle electrical system includes a second auxiliary system supply line which is connected to the auxiliary system and to the output side of the energy supply unit, for bypassing the bus bar. The two auxiliary system supply lines each have a switch. A method for operating a vehicle electrical system and a rail vehicle having the vehicle electrical system are also provided.
Abstract:
A power converter for an electric locomotive includes an insulating transformer, an AC/DC converter, an inverter, a PWM controller, and a voltage controller. The insulating transformer is supplied with high-voltage AC power from an AC overhead wire to convert a high voltage to a low voltage and output low-voltage AC power. The AC/DC converter receives the low-voltage AC power and performs AC/DC conversion. The inverter receives an output from the AC/DC converter and performs DC/AC conversion for supply to a load. The PWM controller outputs a PWM control signal having a predetermined pattern, the pattern for removing specific harmonic components from an output of the inverter or attenuating the specific harmonic components to at most a predetermined level. The voltage controller controls a DC output voltage of the AC/DC converter to control an output voltage of the inverter.