Abstract:
A payload delivery device configured to deliver an aircraft deployed payload along a flight path to a predetermined landing destination includes a support member configured to be removably attached to the payload, a flight control and navigation system module configured to control orientation of the plurality of control surfaces while the payload is travelling along the flight path to the predetermined landing destination, a control surface assembly module including a plurality of control surfaces, a rotor assembly including a plurality of rotor blades having a central axis of rotation, and a collective control assembly module including at least one collective servomotor configured to control a plurality of control linkages connected to the plurality of rotor blades.
Abstract:
The present invention discloses a disruptive low capital and operational cost logistics system and method that provides for fast and massive delivery of e-commerce merchandise, including same day delivery, of thousands of items and packages, in extensive geographical areas, such as whole states, countries and continents, reducing the need for building, operating, or using multiple fulfillment warehouses located near the consumers as in traditional e-commerce logistics, creating a revolution in the e-commerce industry worldwide. In a disruptive manner, the systems and methods of the present invention facilitate the logistics for e-commerce delivery processes, and also may allow at the same time reducing the use of massive quantities of cardboard packages that are used for protection and containment for e-commerce orders, being sustainably beneficial for the e-commerce market, the environment, and the consumer. This is achieved by the use of multibox packages that are configured to contain a set of products including orders from different consumers and not necessarily having individual packages for individual consumers, where such multibox packages are sorted at the origin in a Central Fulfillment Center.
Abstract:
An inflatable unit load device that is used to deploy cargo from an aircraft is described herein. In some instances, the inflatable unit load device may include a bladder having one or more inflatable interior bladder cells and a top surface, the top surface of the bladder forming a rigid support surface when the bladder is inflated on which cargo can be loaded, an outer material that positions the one or more inflatable interior bladder cells of the bladder, and a cargo retaining system that retains the cargo on the top surface.
Abstract:
A payload delivery device configured to deliver an aircraft deployed payload along a flight path to a predetermined landing destination includes a support member configured to be removably attached to the payload, a flight control and navigation system module configured to control orientation of the plurality of control surfaces while the payload is travelling along the flight path to the predetermined landing destination, a control surface assembly module including a plurality of control surfaces, a rotor assembly including a plurality of rotor blades having a central axis of rotation, and a collective control assembly module including at least one collective servomotor configured to control a plurality of control linkages connected to the plurality of rotor blades.
Abstract:
The present invention discloses a disruptive low capital and operational cost logistics system and method that provides for fast and massive delivery of e-commerce merchandise, including same day delivery, of thousands of items and packages, in extensive geographical areas, such as whole states, countries and continents, reducing the need for building, operating, or using multiple fulfillment warehouses located near the consumers as in traditional e-commerce logistics, creating a revolution in the e-commerce industry worldwide. In a disruptive manner, the systems and methods of the present invention facilitate the logistics for e-commerce delivery processes, and also may allow at the same time reducing the use of massive quantities of cardboard packages that are used for protection and containment for e-commerce orders, being sustainably beneficial for the e-commerce market, the environment, and the consumer. This is achieved by the use of multibox packages that are configured to contain a set of products including orders from different consumers and not necessarily having individual packages for individual consumers, where such multibox packages are sorted at the origin in a Central Fulfillment Center.
Abstract:
A container for aerial delivery of a payload is comprised of a box, a lid adapted to close the box, a harness adapted to support the box and lid, a parachute coupled to the harness, and a plurality of inflatable tubes placed within the box and surrounding the payload. The plurality of inflatable tubes adapted to cushion the payload. The parachute has at least one slit adapted to control the descent of the system.
Abstract:
An aerial distribution system and method for deploying items is disclosed. The system includes a bulk shipping container comprised of a single piece of corrugated plastic, cut and folded into a closable box, a plurality of deployment boxes within the bulk shipping container, each deployment box containing at least one item, a plurality of tethers, each tether coupling a deployment box to the bulk shipping container, and a freefall retarding device coupled to the bulk shipping container.
Abstract:
An ejectable flight data recorder for robust retention of flight data and aiding in locating an aircraft after an emergency situation comprises: a buoyant housing comprising an internal cavity, a door for access to at least a portion of the internal cavity, and an aerodynamic outer shape having a longitudinal axis; an energy-dissipating nose cone for reducing an impact load on the housing when the flight data recorder impacts a water surface; a nonvolatile memory configured to store flight data; a position sensor for detecting a geographic position of the flight data recorder; a radio transmitter; an antenna electrically coupled to the radio transmitter; a sustainable power system; and a hydrophone for acoustically tracking a sinking trajectory of the aircraft in a body of water.
Abstract:
The present invention is a machine that connects to, or near, an opening of a dwelling that is capable of receiving objects from aerial delivery machines.
Abstract:
A system for quickly locating and retrieving flight data of an aircraft after an aircraft mid-air mishap comprises: a flight data recorder; a tracking device comprising at least one camera; a rapid ejection system for ejecting the flight data recorder and tracking device; a soft landing system; and a tow system, wherein the tow system is configured to continue to transmit flight information from the aircraft to the tracking device via the data communication link for a period of time after the ejection of the tracking device; and wherein the tracking device transmits to the flight data recorder the flight information received from the aircraft after ejection and the images captured by the tracking device immediately following the mid-air mishap, and wherein the flight data recorder is configured to in turn transmit said flight information and images to the remote device.