摘要:
The invention relates to a method for recovering nickel in one and the same process from two pyrometallurgically produced nickel mattes, one of which contains a remarkable percentage or iron. The leaching of iron-bearing nickel matte is carried out in one step by conducting solution from the leaching cycle of a less iron containing matte into the leaching of a more iron containing matte at a stage where the iron of the less iron containing matte is in soluble form. The iron contained in the mattes is advantageously precipitated as jarosite and the solution created in the leaching of the more iron containing matte is conducted back into the leaching cycle of the less iron containing matte.
摘要:
Catalysts for the production of alkylene oxide by the epoxidation of alkene with oxygen comprise a silver impregnated support containing a sufficient amount of manganese component to enhance at least one of activity and/or efficiency and/or stability as compared to a similar catalyst which does not contain manganese component.
摘要:
For introducing gases, wires and powders to metal melts, a multi-ducted refractory body (11) is installed in the wall (14) of a vessel (15) for the melt. The body has passage closing elements (24, 34, 35) preventing melt entering the passages (A, B, C). Two passages (A and C) serve respectively for introducing gas, and fluidized powders, to the melt: each has a movable pipe (36.91) (for gas or fluidized powder). Upon moving gas pipe (36) towards the melt, it dislodges closing element (24) whereby gas from the pipe can enter the melt via capillary bores (25). Similarly, by moving pipe (91), closing element: when it reaches the closing element (34) the wire can itself dislodge this element to gain access to the melt. A method of introducing substances to liquid related to uses of this apparatus is disclosed, as well as metallurgical processes involving the method.
摘要:
There is described a process for the recovery of noble metals from dilute aqueous or non-aqueous solution which contain salts of non-noble metals and/or difficulty volatile inorganic or organic compounds, which is generally usable, simple to carry out and supplies high yields of noble metals. There is added to the noble metal solution elemental tellurium or a reducible tellurium compound at a temperature of 100.degree. to 250.degree. C. and the precipitate formed worked up in known manner.
摘要:
A hydrometallurgical process is provided for separating heavy metal nuisance elements such as As, Sb, Bi, Sn and Pb from precious metals and/or selenium. The process can be used as a step in an overall hydrometallurgical process for treating refinery residues such as anode slimes for the separation and recovery of valuable metal values.
摘要:
A process for recovering gold from refractory auriferous iron-containing sulphidic ore which comprises feeding ground ore as an aqueous slurry to an acidic pretreatment step. The ground ore in the acidic pretreatment step is treated with aqueous sulphuric acid solution to decompose carbonate and acid consuming gangue compounds, and subjecting the treated slurry to a first liquid-solids separation step to produce a sulphate solution and separated solids. Water is added to the separated solids in a first repulping step to form a slurry having a pulp density in the range of from about 25 to about 60% by weight solids. The first repulped slurry is oxidized in a pressure oxidation step at a temperature in the range of from about 135.degree. to about 250.degree. C. under a pressurized oxidizing atmosphere while maintaining a free acid concentration of from about 5 to 40 g/L sulphuric acid to cause dissolution of iron, formation of sulphuric acid and oxidation of substantially all oxidizable sulphide compounds to sulphate form with less than about 20% of oxidized sulphur being present as elemental sulphur during the oxidation step. Water is added to the oxidized slurry in a seocnd repulping step to produce a repulped oxidized slurry with a pulp density in the range of from about 5 to 15% by weight, and subjecting the repulped oxidized slurry to a second liquid-solids separation step to produce an acid and iron containing solution and oxidized separated solids. The acid and iron containing solution is recycled to at least one of the first and second repulping steps.
摘要:
The disclosure is of a method of preparing alkaline metal salts of organic diamines. The method comprises, in brief, reacting the alkaline metal with a molar excess of the diamine in the presence of a catalytic proportion of a transition metal compound, at a temperature of from about 20.degree. C. to reflux temperature for the reaction mixture.
摘要:
The invention relates to the preferential precipitation of cobalt from aqueous acidic sulphate solutions of nickel and cobalt.The separation is carried out by introducing at least a stoichiometric amount of Caro's Acid containing no more than a small amount of hydrogen peroxide into the nickel/cobalt solution progressively over a period of at least an hour, while maintaining the solution of a pH from 3.1 or 3.5 up to 4.7 by addition of an alkali metal hydroxide carbonate or bicarbonate, or at 4.3 to 4.7 with the corresponding ammonium compound, and, thereafter separating the precipitate from the aqueous cobalt depleted solution.In preferred features, the Caro's Acid solution used contains hydrogen peroxide in a mole ratio to peroxomonosulphuric acid of not more than 1:10; the Caro's Acid solution is introduced continuously or in increments of less than 1% of the total over a period of at least an hour; the Caro's Acid is produced by reaction between 93-98% sulphuric acid and 65-72% aqueous hydrogen peroxide in a mole ratio of 2.7:1 to 3.5:1; the Caro's Acid solution is diluted before use; and particular amounts of Caro's Acid are used depending upon the nature of the nickel/cobalt solution, the mode of treatment, and the nature of the neutralizing agent. Further separation can be effected by subsequent water and particularly not acid washing of the precipitate.
摘要:
An improved method for recovery of metal, particularly aluminum, from metal bearing dross utilizes a trough for collection of the dross. A wedge member compresses the dross in the trough. In this manner, metal is decanted from the compressed dross and flows through slots in the bottom or passages in the walls of the trough for collection in a pan, or becomes concentrated at the edges or walls of the volume of dross. The trough and wedge members also serve to cool the dross material thereby diminishing metal loss due to thermite reaction. The compressed dross coalesces and solidifies, is broken and is mechanically separated. The larger dross components from the separation process are substantially metallic and may be recycled through the furnace. The remaining components are charged in a vortex melting furnace for the lowest possible melt loss. This also effects segregation of the remaining metal from the dross by melting the metal and allowing the dross to rise to the top of the bath. The improved method of the present invention provides for recovery of about 95% of aluminum metal from a dross which contains about 70% aluminum as compared with a recovery rate of about 50% aluminum metal utilizing a generally known prior art technique.
摘要:
The present process involves an improvement in the hydrometallurgical recovery of metal values from metal bearing sources such as ores and the like. The desired metal values are recovered by subjecting a metal bearing source to a reductive roast in a reducing atmosphere after having treated said source with at least one additive. Following the reductive roast the reduced metal bearing source is cooled and extracted by a leaching operation. The separation of various metal values in the metal bearing source may be effected by adding a solid adsorbent to the leach solution whereby selective metal ions are adsorbed thereon. The improvement in the present process comprises pretreating the solid adsorbent prior to use thereof with an acid thereby increasing the loading capacity of the metal ions in the adsorbents as well as kinetics of metal adsorption.