Abstract:
The present invention is directed to compositions and methods for forming conversion coatings on a surface of a substrate by contacting a liquid composition to the surface of the substrate at a high temperature (i.e., 400° F. or above).
Abstract:
A metallic surface treating solution characterized in that it is an aqueous solution at pH 0.1 to 6.5 comprising a source of at least one selected from the group consisting of Mo, W, V, Nb, Ta, Ti, Zr, Ce, Sr, and trivalent chromium, an oxidizing substance source, and an oxyacid or oxyacid salt of phosphorus or its anhydride, a surface treating method using the treating solution, and metals thereby treated on the surface.
Abstract:
Aqueous coating compositions are described which comprise(A) at least one cyclic hydroxy compound selected from the group consisting of cyclic polyhydroxy compounds and substituted phenols;(B) phosphate ions;(C) at least one oxidizer-accelerator; and(D) water.The coating compositions also may contain fluoride ions and/or iron. A method of improving the corrosion resistance of iron, steel, and zinc-coated surfaces also is described, and the method comprises contacting the surfaces with an aqueous acidic coating composition as described above. The coated metal surfaces may be subsequently provided with an organic or inorganic top-coat or seal-coat resulting in improved corrosion resistance, adhesion and detergent resistance properties.
Abstract:
The invention refers to new compositions for protecting steel surfaces from the oxidizing action of atmosphere.The essential components are: glucosides of pyrogallic and/or allagic acid of molecular weight between 270 and 1200; phosphoric acid, phosphates of bivalent transition metals such as Zn and Mn and nitrates of bivalent metals such as Zn and Mn.
Abstract:
A steel surface pre-treated with an oily material and a phosphating agent in which the surface is (a) first coated with up to 50 milligrams phosphating agent per square meter of surface, and then the oily material is coated on the surface; or (b) the phosphating agent and oily material are simultaneously coated on the surface to provide up to 50 milligrams of phosphating agent per square meter of surface and at least 150 milligrams of oily material per meter of surface; or (c) the phosphating agent and oily material are simultaneously coated on the surface to provide up to 150 milligrams of oily material per square meter of surface.