Abstract:
There is provided a surface-treated steel sheet (1) comprising: a tin-plated steel sheet (10) obtained by tin-plating a steel sheet (11); a phosphate compound layer (20) containing tin phosphate formed on the tin-plated steel sheet (10); and an aluminum-oxygen compound layer (30) on the phosphate compound layer (20), a main constituent of the aluminum-oxygen compound layer (30) being an aluminum-oxygen compound; wherein, when the 3d5/2 spectrum of tin in the aluminum-oxygen compound layer (30) is determined using an X-ray photoelectron spectroscopy, the ratio of the integration value of the profile derived from tin oxide to the integration value of the profile derived from tin phosphate (tin oxide/tin phosphate) is 6.9 or more.
Abstract:
A surface-treated steel sheet including a tin-plated steel sheet having a tin plating on a steel sheet; a tin oxide layer formed on the tin-plated steel sheet and containing tin oxide as a main component; a composite oxide layer formed on the tin oxide layer and containing phosphoric acid and aluminum as main components; and an aluminum-oxygen compound layer formed on the composite oxide layer and containing an aluminum-oxygen compound as a main component, wherein the tin oxide layer has a thickness of 8 to 20 nm.
Abstract:
There is provided a surface-treated steel sheet (1) comprising: a tin-plated steel sheet (10) obtained by tin-plating a steel sheet (11); a phosphate compound layer (20) containing tin phosphate formed on the tin-plated steel sheet (10); and an aluminum-oxygen compound layer (30) formed on the phosphate compound layer (20), a main constituent of the aluminum-oxygen compound layer being an aluminum-oxygen compound.
Abstract:
A method of manufacturing a tin-plated steel sheet includes forming an Sn-containing plating layer on at least one surface of a steel sheet so that the mass per unit area of Sn is 0.05 to 20 g/m2; forming a first chemical conversion coating by immersing the steel sheet in a first chemical conversion solution containing tetravalent tin ions and phosphate ions or cathodically electrolyzing the steel sheet in the first chemical conversion solution; forming a second chemical conversion coating after forming the first chemical conversion coating without drying the steel sheet by immersing the steel sheet in a second chemical conversion solution containing 5 to 200 g/L of aluminum phosphate monobasic and having a pH of 1.5 to 2.4 or cathodically electrolyzing the steel sheet in the second chemical conversion solution; and drying the steel sheet.
Abstract:
The present disclosure describes a coated implant for bone repair that is biodegradable. The coated implant includes an implant body formed from a magnesium alloy, and a porous ceramic coating disposed on at least a portion of an outer surface of the implant body. The porous ceramic coating can include MgO, Mg(OH)2, Mg3(PO4)2, and oxides of alloying elements of magnesium
Abstract:
The present invention provides a method of manufacturing anode foil for aluminum electrolytic capacitors with high capacitance and decreased leakage current. The method has the following steps: dipping etched aluminum foil into pure water having a temperature of 90° C. or higher so as to form a hydrated film on the foil; attaching organic acid to the surface of the hydrated film; performing main chemical conversion on the aluminum foil with application of formation voltage after the attaching step; performing depolarization on the aluminum foil after the main chemical conversion step; and performing follow-up chemical conversion on the aluminum foil after the main chemical conversion step. The main chemical conversion treatment has two-or-more stages. In the first stage of the treatment, the foil is dipped into a phosphate aqueous solution, and in the last stage, it is dipped into an aqueous solution different from the phosphate aqueous solution.
Abstract:
A method of producing a tinned steel sheet that includes forming an Sn-containing plating layer on at least one surface of a steel sheet with a mass per unit area of Sn is 0.05 to 20 g/m2; immersing the steel sheet in a chemical conversion solution containing 60 g/L or more and 200 g/L or less of aluminum phosphate monobasic and which has a pH of 1.5 to 2.4 or cathodically electrolyzing the steel sheet at a current density of 10 A/dm2 or less in the chemical conversion solution; and drying the steel sheet to form a chemical conversion coating.
Abstract translation:一种包含在每单位面积Sn的质量的钢板的至少一个表面上形成含Sn镀层的镀锡钢板的制造方法为0.05〜20g / m 2; 将钢板浸渍在含有60g / L以上200g / L以下的磷酸铝一磷酸盐的化学转化处理液中,其pH为1.5〜2.4,或以10A / cm 2的电流密度阴极电解钢板, dm2以下; 并干燥钢板以形成化学转化涂层。
Abstract:
A method is disclosed for improving the corrosion behavior of cast magnesium alloy articles in which the magnesium alloy comprises an average composition of more than about 5 per cent by weight of aluminum. A microstructure with regions of varying aluminum content is developed during solidification. The microstructure comprises magnesium-rich grains generally surrounded by an aluminum-enriched phase on the boundaries between adjacent grains. The magnesium-rich grain interiors are then selectively chemically or electrochemically attacked to leave a more corrosion resistant aluminum-enriched surface on the articles. The corrosion resistance of the articles may be further enhanced by one or more of anodizing, aluminizing or painting the corrosion-resistant aluminum-enriched surface.
Abstract:
A steel sheet for containers that has excellent film adhesion qualities, and has; a chemical conversion coating formed by immersing or subjecting to electrolytic treatment a steel sheet in a solution containing Zr ions, F ions, with adhesion amount of 0.1 to 100 mg/m2 for metal Zr and no more than 0.1 mg/m2 for F; and a hydroxyl acid treatment layer formed on the chemical conversion coating, the layer having a C adhesion amount of 0.05 to 50 mg/m2.
Abstract translation:具有优异的膜粘合性的容器用钢板,具有: 通过在包含Zr离子的溶液中对钢板进行电解处理而形成的化学转化膜,F离子,金属Zr的附着量为0.1〜100mg / m 2,F为0.1mg / m 2以下; 以及形成在化学转化涂层上的羟基酸处理层,该层的C附着量为0.05〜50mg / m 2。
Abstract:
A method for producing a steel component provided with a metallic coating which protects against corrosion, in which a steel flat product, produced from an alloyed heat-treated steel, is coated with an Al coating which contains ≧85% wt. Al and optionally ≦15% wt. Si, a Zn coating with ≧90% wt. Zn, and a top layer, the main constituent of which is at least one metal salt of phosphoric acid or diphosphoric acid and which additionally can contain contents of up to 45% of an Al:Zn ratio as well as optionally metal oxides, metal hydroxides and/or sulphur compounds, the steel flat product is heat treated at ≧750° C., and the steel component is hot-formed from the heated steel flat product. The hot-formed steel component is cooled at a cooling rate sufficient to form a tempered or martensitic structure.