Abstract:
A method and apparatus for transmitting electrical signals and fluids to and/or from a microelectronic workpiece. An apparatus in accordance with one embodiment of the invention includes a shaft rotatable about a shaft axis and having a first end with a first electrical contact portion toward the first end, a second end opposite the first end, and an internal channel along the shaft axis between the first and second ends. The shaft can further have at least one first hole toward the first end with the first hole extending radially from the channel to an external surface of the shaft. The shaft can still further have at least one second hole toward the second end with the second hole extending from the channel to the external surface. A housing rotatably receives the shaft and has an aperture coupleable to a fluid source and/or fluid sink. The housing further has a fluid passage positioned adjacent to at least one of the first holes of the shaft and in fluid communication with the aperture when the shaft rotates relative to the housing. The housing also has a second electrical contact portion engaged with the first electrical contact portion to transmit electrical signals between the first and second electrical contact portions while the shaft rotates relative to the housing.
Abstract:
An electrochemical reaction assembly and methods of inducing electrochemical reactions, such as for deposition of materials on semiconductor substrates. The assembly and method achieve a highly uniform thickness and composition of deposition material or uniform etching or polishing on the semiconductor substrates by retaining the semiconductor substrates on a moving cathode immersed in an appropriate reaction solution wherein a wire mesh anode rotates about the moving cathode during electrochemical reaction.
Abstract:
Deposition of conductive material on or removal of conductive material from a wafer frontal side of a semiconductor wafer is performed by providing an anode having an anode area which is to face the wafer frontal side, and electrically connecting the wafer frontal side with at least one electrical contact, outside of the anode area, by pushing the electrical contact and the wafer frontal side into proximity with each other. A potential is applied between the anode and the electrical contact, and the wafer is moved with respect to the anode and the electrical contact. Full-face electroplating or electropolishing over the wafer frontal side surface, in its entirety, is thus permitted.
Abstract:
After bubbles adsorbed to a substrate are removed by rotating the substrate in a plating solution at a higher speed or after the wettability of the surface of the substrate to be plated is improved before the substrate is immersed in the plating solution, the substrate is rotated in the plating solution at a lower speed so that a plating process is performed with respect to the substrate.