Abstract:
A vehicle drive includes a speed change mechanism connected to a rotary electric machine; an output member connected to the speed change mechanism and wheels; an engagement device changes a state of engagement between an input member connected to an engine and the speed change mechanism; a hydraulic pump driven by the engine or the rotary electric machine; a first pressure control device that controls pressure supplied from the pump and supplies the pressure to the speed change mechanism; a second, separate hydraulic pressure control device that controls the pressure supplied from the pump and supplies the pressure to the engagement device; and a case that houses the rotary electric machine, speed change mechanism, engagement device, and pump. At least the engagement device is housed in a space formed by the case, and the second hydraulic pressure control device is provided at a part of the case forming the space.
Abstract:
Downhole electrical power generation apparatus and methods of using stored pressurized gas and/or ambient downhole pressure. One example comprises first and second fluid receiving chambers, a fluid communication path for allowing flow of fluid from the first chamber via the fluid communication path to the second chamber and a turbine generator disposed so that fluid flowing from the first chamber via the fluid communications path to the second chamber operates the turbine generator to generate electrical power.
Abstract:
A hydraulic pressure controller, which controls hydraulic pressure supplied to a torque converter including a lock-up clutch that is engageable using a hydraulic pressure from a mechanical pump, including a first pressure regulation valve that regulates pressure in a first passage connected to the pump while discharging oil in the first passage to a discharge passage; a bypass passage branched from the first passage bypassing the first pressure regulation valve; a first switching valve selectively switchable between a first state in which the bypass passage and a second passage are connected to each other and a second state in which the discharge passage and the second passage are connected to each other; and a second pressure regulation valve that regulates a hydraulic pressure in the second passage. The first switching valve is switchable into the first state to engage the clutch and into the second state to disengage the clutch.
Abstract:
A method and system for managing accumulator effects during engagement of a lockup clutch of a torque converter includes selecting a pump speed profile that reduces a rotational speed of a pump of the torque converter from an initial value to a rotation speed of a turbine of the torque converter. A pump acceleration profile is determined based on the pump speed profile. Engagement of the lockup clutch is controlled as a function of an inertia of an engine associated with the torque converter, a torque applied by the engine to the pump, the rotational speed of the turbine, the pump speed profile, and the pump acceleration profile.
Abstract:
Embodiments of the invention can include methods and systems for controlling clearances in a turbine. In one embodiment, a method can include applying at least one operating parameter as an input to at least one neural network model, modeling via the neural network model a thermal expansion of at least one turbine component, and taking a control action based at least in part on the modeled thermal expansion of the one or more turbine components. An example system can include a controller operable to determine and apply the operating parameters as inputs to the neural network model, model thermal expansion via the neural network model, and generate a control action based at least in part on the modeled thermal expansion.
Abstract:
A hydraulic pressure control apparatus for a torque converter includes a relay valve switching levels of a hydraulic pressure in the hydraulic power transmission chamber and establishing selective connections between a cooler and the hydraulic power transmission chamber or between the cooler and a hydraulic pressure supply source of which a flow amount of the operational fluid is regulated by a first orifice, an electronic control unit controlling operations of the relay valve, a hydraulic pressure declination determining portion judging whether the hydraulic pressure of the hydraulic pressure supply source is lower than a threshold value based on a predetermined vehicle state, and a switching command outputting portion outputting a command to connect the cooler and the hydraulic pressure supply source by the relay valve when the hydraulic pressure declination determining portion determines that the hydraulic pressure of the hydraulic pressure supply source is lower than the threshold value.
Abstract:
The invention relates to a hydrodynamic assembly with a hydrodynamic retarder comprising a rotor and a stator; with a hydrodynamic clutch, comprising a primary wheel and a secondary wheel; the rotor and the stator of the retarder as well as the primary wheel and the secondary wheel of the clutch respectively form with each other a torus-shaped working chamber; the rotor of the retarder and the secondary wheel of the clutch are joined to each other in torsion-proof manner, in axial direction in series in a back to back arrangement; the primary wheel has a drive connection to a first input shaft; the rotor and the secondary wheel have a drive connection to a second input shaft; The inventive hydrodynamic assembly is characterized in that the rotor and the secondary wheel can be moved jointly in axial direction between a first position, in which the secondary wheel is opposite the primary wheel at a minimum axial distance and the rotor is opposite the stator at a maximum axial distance, and a second position, in which the secondary wheel is opposite the primary wheel at a maximum distance and the rotor is opposite the stator at a minimum axial distance.
Abstract:
A drive arrangement for driving, or for being driven by, a fluid is disclosed. The drive arrangement comprises a rotatable member (40) for receiving the fluid, and having mounted thereon a plurality of drive members (56). The drive members (56) are movable between a drive position, in which the drive members can drive, or be driven by, the fluid, and a non-drive position in which the drive members (56) are substantially prevented from driving or being driven by a fluid received in the rotatable member (40).
Abstract:
A hydrodynamic coupling apparatus (10) for transmitting torque between driving and driven elements includes an input shaft (14), a first end (16) of which is rotatably supported in a case (12) and a second end (18) of which is connectable to a torque generator (20). A hydrodynamic clutch (22) is connected to the first end (16) of the input shaft (14) and includes an impeller (34) and a turbine (36) enclosed in a clutch housing (24). The impeller (34) is fixed to the first end (16) of the input shaft (14), and the turbine (36) is rotatably supported adjacent the impeller (34). Both the impeller (34) and the turbine (36) are immersed in magnetorheological fluid (30). An electromagnetic field generator (32) is supported adjacent the clutch housing (24) and is operable to generate a magnetic field in the magnetorheological fluid (30). The field generator is adjustable to adjust the density of the magnetic field flux and, consequently, the amount of torque transferred from the impeller (34) to the turbine (36).
Abstract:
The present invention includes a centrifugal pump powered by an engine. A hose is connected to the centrifugal pump at a pump outlet. An injection nozzle is connected at the other end of the hose. A controller is operable to move the nozzle. A turbine is directly connected to an output shaft. Power oil is provided by the pump, through the hose, to the injection nozzle. The turbine receives the injected power oil from the nozzle and transmits power to the output shaft.