Abstract:
A circulating fluidized bed boiler, comprising a furnace, a loopseal, and a loopseal heat exchanger arranged in the loopseal. The loopseal heat exchanger comprises at least an inlet chamber, a bypass chamber, and a first heat exchange chamber, heat exchanger pipes arranged in the first heat exchange chamber, and a primary particle outlet for letting out bed material from the first heat exchange chamber. The primary particle outlet has at least a first part and a second part separated from each other by a barrier element in such a way that the first part of the primary particle outlet has a first height and a first width, wherein a ratio of the first height to the first width is less than 0.5 or more than 2. Use of the circulating fluidized bed boiler such that fluidizing gas and bed material are let out from the first heat exchange chamber via the primary particle outlet.
Abstract:
A thermal reactor of fluidizing bed type includes a thermal recovering arrangement. A part of a fluidizing medium is supplied into the thermal energy recovering arrangement so as to pass therethrough, whereby; thermal energy is recovered by a heat exchanger disposed in the recovering arrangement.
Abstract:
Various aspects provide for a multistage fluidized bed reactor, particularly comprising a volatilization stage and a combustion stage. The gas phases above the bed solids in the respective stages are separated by a wall. An opening (e.g., in the wall) provides for transport of the bed solids from the volatilization stage to the combustion stage. Active control of the gas pressure in the two stages may be used to control residence time. Various aspects provide for a fuel stream processing system having a pretreatment reactor, a combustion reactor, and optionally a condensation reactor. The condensation reactor receives a volatiles stream volatilized by the volatilization reactor. The combustion reactor receives a char stream resulting from the removal of the volatiles by the volatilization reactor.
Abstract:
Method and apparatus for providing a gas seal in a CFB reactor, which is provided with a vertical, slot-shaped return duct (16), and for regulating the flow of circulating mass therein. The gas seal (22) is formed by arranging barrier means (22, 24, 26) on two different levels in the regulation zone of the return duct to slow down the flow of the circulating mass through the regulation zone. The flow of the circulating mass through the regulation zone is regulated by injecting fluidizing gas (56, 58, 60) into the regulation zone.
Abstract:
The present invention is a process and associated apparatus for obtaining energy from a fuel source having particles varying in size from fines to coarse. The fuel source is introduced into a passageway formed between an upper combustor and a lower combustor. A gas stream is moved upwardly through the passageway such that the fine particles are entrained in the gaseous stream and carried into the upper combustor.
Abstract:
Aspects provide for volatilizing a biomass-based fuel stream, removing undesirable components from the resulting volatiles stream, and combusting the resulting stream (e.g., in a kiln). Removal of particles, ash, and/or H2O from the volatiles stream improves its economic value and enhances the substitution of legacy (e.g., fossil) fuels with biomass-based fuels. Aspects may be particularly advantageous for upgrading otherwise low-quality biomass to a fuel specification sufficient for industrial implementation. A volatilization reactor may include a fluidized bed reactor, which may comprise multiple stages and/or a splashgenerator. A splashgenerator may impart directed momentum to a portion of the bed to increase bed transport via directed flow.
Abstract:
In order to quantitatively evaluate actual circulation quantity of bed material extremely simply and to enhance accuracy of comparison of results of thermal balance examined through simulation or the like with actual operation results, time is measured which is required for bed material in a downcomer 5 to reach an upper predetermined height H1 from a lower reference height H0 during stopped feeding of fluidizing air to an external heat exchanger 7; a flow rate of the bed material as circulation quantity is determined from the time and an accumulated amount of the bed material based on an inner diameter D of the downcomer 5.
Abstract:
An internal recycling type fluidized bed boiler includes a primary fluidized bed incinerating chamber constructed by an air diffusion plate, and an inclined partition wall provided above a portion of the diffusion plate where the mass flow of the air injected from the diffusion plate is greater than that from another portion so as to interfere with the upward flow of the fluidizing air injected from that portion and deflect it towards the portion above the diffusion plate where the mass flow of gas injected is smaller. A thermal energy recovery chamber is formed between the inclined partition wall and a side wall of an incinerator. The inclined partition wall is inclined by 10.degree.-60.degree. relative to the horizontal and is arranged such that the length of its projection in the horizontal direction is 1/6-1/2 of the horizontal length of the bottom of the incinerator bottom. A method of controlling the above fluidized bed boiler with respect to the amount of thermal energy recovered from the thermal energy recovery chamber includes regulating the amount of air injected from a diffuser in the thermal energy recover chamber, based on demands from the user side utilizing the recovered thermal energy. The amount of fuel to the primary fluidized bed incinerating chamber is controlled based on the temperature in the primary fluidized bed incinerating chamber.
Abstract:
A thermal reactor which utilizes a fluidizing bed includes a thermal energy recovery chamber having a heat exchanger therein. Fluidizing medium disposed in the fluidizing bed is supplied into the thermal energy recovery chamber due to circulation of the fluidizing medium within the fluidizing bed. The fluidizing medium is passed through the thermal energy recovery chamber such that thermal energy present in the fluidizing medium is transferred to the heat exchanger.
Abstract:
Various aspects provide for a multistage fluidized bed reactor, particularly comprising a volatilization stage and a combustion stage. The gas phases above the bed solids in the respective stages are separated by a wall. An opening (e.g., in the wall) provides for transport of the bed solids from the volatilization stage to the combustion stage. Active control of the gas pressure in the two stages may be used to control residence time. Various aspects provide for a fuel stream processing system having a pretreatment reactor, a combustion reactor, and optionally a condensation reactor. The condensation reactor receives a volatiles stream volatilized by the volatilization reactor. The combustion reactor receives a char stream resulting from the removal of the volatiles by the volatilization reactor.