A SOLAR ENERGY CAPTURE, ENERGY CONVERSION AND ENERGY STORAGE SYSTEM

    公开(公告)号:US20200333046A1

    公开(公告)日:2020-10-22

    申请号:US16312546

    申请日:2017-06-22

    摘要: A solar energy capture, conversion and storage system for use on a roof of a building for capturing and converting incident solar radiation to heat and electricity. The invention provides an optimised solar energy capture and conversion system that monitors immediately available incident radiation comprising a mounting structure which supports a matrix in which is embedded a conduit containing a working fluid. The fluid or fluid mixture includes at least one hydro-fluoro-ether (HFE). Valves are arranged to open/close ports which connect the solar energy capture system to either a combined heat/electrical generating system or an energy storage system that incorporates a phase change material to store heat energy. Control of the valves is supervised by an energy management system.

    Product for heating
    3.
    发明授权

    公开(公告)号:US10801754B2

    公开(公告)日:2020-10-13

    申请号:US16067389

    申请日:2016-12-29

    申请人: UNIQAN OY

    摘要: The invention relates to a product for heating comprising at least one heating unit (2), which comprises a base material layer with an emission reducing structure on top of said an energy converting structure, combined together to form a selective absorber layer on at least one of the sides of the base material layer, at least one insulation layer (4, 5, 6, 7) of transparent flexible material located on the heating unit (2), which heating unit and the at least one insulation layer on the heating unit (2) of the product (1) are attached to each other air-tightly on the sides such that between at least some of the layers at least one closed air pocket (10, 11) is formed, characterized in that the content to be heated by the product is located below to the base material of the heating unit of the product (1), that temperature of the content of the product (1) will be 90° C.-160° C., as result of the placing the product (1) exposed to radiation of selected wavelengths, and that the energy converting structure in the selective absorber layer has an absorption factor (aS) of a minimum of 0.9 and the emission reducing structure has an emission factor (E) of a maximum of 0.1 and that ratio between the absorption factor (aS) and the emission factor (E) is equal or higher than 9 and that when the selective absorber is exposed to wavelengths ranging from 350 nm to 4000 nm, the energy converting structure converts the wavelengths to thermal energy ranging from 4000 nm to 40.000 nm and the emission of thermal energy is reduced by the emission reducing structure and the contained energy is being used for heating the content of the product (1).

    Inflatable non-imaging solar concentrator water desalination system

    公开(公告)号:US20190162450A1

    公开(公告)日:2019-05-30

    申请号:US15732558

    申请日:2017-11-27

    申请人: Yonghua Wang

    发明人: Yonghua Wang

    摘要: An inflatable non-imaging solar concentrator water desalination system comprises an inflatable non-imaging stationary solar concentrator and shallow black basin type evaporator. The evaporator is made into a semi-close structure house like a stadium to surround the concentrator. An absorber made of black coating or porous absorption materials is placed on the basin of the concentrator. The evaporator consists of an inner holder, a outer holder, a freshwater collector, and a condenser to form a space for water to evaporate, and to be condensed and collected. The inflatable non-imaging solar concentrator is assembled with the evaporator in such a way that the output aperture of the solar concentrator is directly over the surface of the absorber

    Thermal cell panel system for heating and cooling and associated methods

    公开(公告)号:US11143437B2

    公开(公告)日:2021-10-12

    申请号:US16423887

    申请日:2019-05-28

    发明人: Stewart Kaiser

    摘要: A thermal cell panel system for heating and cooling using a refrigerant includes a plurality of solar thermal cell chambers, and a piping network for a flow of the refrigerant through the plurality of solar thermal cell chambers. In addition, the system includes a compressor having a motor coupled to a variable frequency drive (“VFD”), where the compressor is coupled to the piping network upstream of the plurality of solar thermal cell chambers and the VFD is configured to adjust a speed of the motor in response to the pressure of the refrigerant within the plurality of solar thermal cell chambers. The piping network includes an inlet manifold coupled to the inlet of each solar thermal cell chamber, and an outlet manifold coupled to the outlet of each solar thermal cell chamber.