Abstract:
A system for determining the state of shear deformation of a crown portion of a tyre (1) during the running of a motor vehicle (7) comprises at least one sensor (11; 111; 211) and processing means (15) operatively associated with said sensor; the system further comprises at least one magnetic field generator (10; 110; 210) applied to the tyre (1); said sensor (11; 111; 211) is capable of detecting magnetic induction and is associated with said generator (10; 110; 210) to supply a signal indicating the electrical potential difference which is generated within said sensor in the presence of the magnetic field; this signal represents the variation with time of the shear deformation of the crown portion of the tyre (1).
Abstract:
A force transducer element (20) comprises a body (22) of magnetisable material having at least one magnetised region (30) at an angle, say 45null, to the force-sensing direction (P-P). Preferably there are a plurality of parallel magnetised regions of alternating opposite polarity of magnetisation to form closed loops (43p, 43n). The element may be a block having opposite force receiving surfaces (24, 24null). The body (122) may contain plural transducer elements (120a, 120b) angled to one another to resolve force directions. The principle is extended to a circular transducer element (243). The invention may be implemented in a flexible magnetic tape. Another embodiment (300) is realised in a planar structure in which a ferromagnetic core (310) is subject to a magnetic field (326) at an angle to the direction (F) of force application generated by laterally offset coils (312, 314). A sensor device (330) is fabricated in the structure.
Abstract:
A magnetic force sensor and method for measuring a force applied to an object. A magnetostrictive element mounted on at least a portion of the object is subjected to a prestress. A conductive coil is wound around at least a portion of the magnetostrictive element. An excitation source, which includes one of a current source and a voltage source, excites the conductive coil. A detection circuit detects one of an induced voltage across the conductive coil and a voltage drop across a resistor in series with the conductive coil. The detected voltage can be used to determine the applied force. A second coil can be used in a bipolar sensor or to correct for variations in ambient conditions.
Abstract:
A hall effect seat belt tension sensor for a vehicle. The sensor has a housing mounted to a seat belt. An anchor plate is mounted between the seat belt and a fixed point on a vehicle. The anchor plate is partially mounted in housing. A spring is mounted between the housing and the anchor plate. Tension on the seat belt causes the anchor plate to move relative to the housing. A magnetic field generator is mounted to the anchor plate. The magnetic field generator moves as the anchor plate moves. A magnetic field sensor is mounted to the housing. The sensor generates an electrical signal in response to movement of the magnetic field generator.
Abstract:
A magnetic transducer element is formed in a portion (22) of a shaft (20) by an axially-oriented magnetic source (30) comprising a U-shape permanent magnet or electromagnet assembly, the gap (g) between the poles of which is small compared to the pole width (w). The source (30) is brought up to the continually rotating shaft (20) from a distance (D1) to a position closely proximate (D2) the shaft (20) and then retracting the source (30). With an electromagnet the mechanical movement may be emulated by controlling the energising of the electromagnet. An annular, surface-adjacent zone of axially-directed magnetisation is created whose external detectable field (40) has a distribution in the axial direction which shifts axially under applied torque. An axial or radial component may be sensed as a measure of torque. A method of preparing the shaft for magnetisation (magnetic-cleansing) and a post-magnetisation procedure is disclosed.
Abstract:
A control signal generator transmits a first signal to a movable electrode and a fixed electrode to detect a change in a capacitance formed between the movable electrode and the fixed electrode during a normal physical quantity detection timing interval. Also, the control signal generator transmits a second signal to the movable electrode and the fixed electrode instead of the first signal to move the movable electrode for diagnosing a malfunction of each of a plurality of physical quantity detection portions during a self diagnosis timing interval. The control signal generator transmits the second signal to the movable electrode and the fixed electrode of each physical quantity detection portion during a different timing intervals.