摘要:
A system for converting an image into a hologram formed from diffraction gratings includes obtaining image data for each pixel in an image to be converted, putting it into digital form and using the image data to control portions of a laser beam split into a reference beam and at least one object beam. The diffraction gratings are formed by an interference pattern of a reference beam and at least one object beam intersecting on the surface of a photoresist material on a pixel-by-pixel basis. Modulation of at least one object beam and adjustment of the angle at which that beam interferes with the reference beam on the photoresist material is used to reflect image data for each pixel of the image being converted into a hologram consisting of diffraction gratings. By using this technique and selecting the spacings between pixel pairs on the photosensitive surface, the angle at which a viewer will see a predetermined image or reflecting light from the hologram is determined, as well as the apparent position of the image created by reflecting light from the hologram constituted by the spaced diffraction gratings.
摘要:
A three-dimensional image is stored (E0) in a computer memory in the form of digital data and defined in a three-dimensional geometrical space. Two-dimensional images are calculated (E1) by determining, in the three-dimensional geometrical space, the intersections between the three-dimensional image and a plurality of parallel section planes. Respective holograms are calculated (E2) for the two-dimensional images, and are then reproduced (E3) sequentially on a spatial light modulator illuminated by a coherent light source. A transparent three-dimensional image is thus reproduced.
摘要:
A system for producing a white-light interference hologram includes a camera adapted for recording a first and a second bitmap image of a scene from separate vantage points, and the separation distance of the vantage points, a computing engine adapted to compute three-dimensional x, y, and z characteristics of an interference hologram topology for the scene from the bitmap image and separation data, wherein x and y are two dimensional locations of bits in a bitmap of the topology and z is a depth dimension for each x,y bit, and a printer adapted to print in color the x,y bitmap, and to create the depth dimension z at each x,y bit location, providing thereby a three-dimensional interference hologram topology for the scene. In a preferred embodiment the depth dimension is created by electrophoresis, using a medium having an electrophoretic gel layer, with the ink applied to the gel in a bit-mapped pattern being ionic in nature, and capable of being migrated in the gel layer by electrophoresis. In other embodiments the third dimension is provided by using magnetic ink and migrating the bits using controlled magnetic fields.
摘要:
The method consists of transforming a digital two-dimensional image defined by a real function into a complex two-dimensional image defined by a complex function, oversampling the complex image, simulating the production of a diffracted image resulting from the diffraction of an optical wave by the oversampled complex image, and adding a complex field representing a reference optical wave to the resulting diffracted image to produce a hologram. The hologram produced in this way can be used to produce images in three dimensions or in telecommunications.
摘要:
A method and system for generating a hologram include a computer (104) connected to a printer (108). A mathematical description (102) of an object, including for example the physical dimensions of the object, is provided to the computer (104). The computer (104) computes a holographic interference pattern based on the mathematical description (102) of the object, and than transmits the computed holographic interference pattern data (106) to the printer (108). The printer (108) prints or otherwise fixes the holographic interference pattern to a print medium (107) to produce a holograph (110). A holographic (three-dimensional) image (114) of the object can then be produced by directing a light beam (118) from a light source (112) onto a surface of the hologram (110), so that the light will interfere with the pattern to generate the holographic image (114).
摘要:
A digital holography device, applicable for example to the 3D mapping of objects, is used to determine the complex amplitude of a signal wave coming from an object illuminated by a known illumination wave. For this purpose, the device includes a source for the generation of two mutually coherent waves, the object illumination wave and a reference wave, the two waves having a phase difference &phgr;i(t) that is a function of time. The device also includes a mechanism configured to induce an interference, on a detection device, between the reference wave and the signal wave coming from the object. The detection device enables a temporal sampling of the interference pattern resulting in the acquisition of a number N of interferograms, N being greater than or equal to 2. Each interferogram corresponds to a distinct phase difference between the signal wave and the reference wave that are incident on the detection device, the complex amplitude of the signal wave being then determined from the processing of the interferograms.
摘要:
A system for producing a white-light interference hologram includes a camera adapted for recording a first and a second bitmap image of a scene from separate vantage points, and the separation distance of the vantage points, a computing engine adapted to compute three-dimensional x, y, and z characteristics of an interference hologram topology for the scene from the bitmap image and separation data, wherein x and y are two dimensional locations of bits in a bitmap of the topology and z is a depth dimension for each x,y bit, and a printer adapted to print in color the x,y bitmap, and to create the depth dimension z at each x,y bit location, providing thereby a three-dimensional interference hologram topology for the scene. In a preferred embodiment the depth dimension is created by electrophoresis, using a medium having an electrophoretic gel layer, with the ink applied to the gel in a bit-mapped pattern being ionic in nature, and capable of being migrated in the gel layer by electrophoresis. In other embodiments the third dimension is provided by using magnetic ink and migrating the bits using controlled magnetic fields.
摘要:
The present invention is a phase-imaging technique by digital holography that eliminates the problem of 2&pgr;-ambiguity. The technique is based on a combination of two or more digital holograms generated using multiple wavelengths. For a two-wavelength experiment, the phase maps of two digital holograms of different wavelengths are subtracted which yields another phase map whose effective wavelength is inversely proportional to the difference of wavelengths. Using two holograms made with a 633 nm HeNe laser and a 532 nm doubled YAG laser an image was obtained that is a 3D reconstruction of a reflective surface with axial resolution of ˜10 nm over a range of −5 um, without any phase discontinuity over this range. The method can be extended to three wavelengths or more in order to reduce the effect of phase noise further.
摘要:
Apparatus for holographic recording of information includes a lens or lens system, referred to here as the “FT lens,” situated in such a way that light from an object beam enters the FT lens after passing through an object, and light leaving the FT lens impinges on a recording medium situated at a Fourier transform plane of the object with respect to the FT lens. Disclosed apparatus includes a phase element effectively juxtaposed with the object, in which the phase element is effective for redistributing object-beam intensity in the Fourier transform plane, and the phase element has a correlation length greater than a maximum pixel side length associated with the object. Disclosed apparatus includes an optical element or optical system, referred to here as a “power optic,” that adds convergence or divergence to the object beam before the object beam enters the FT lens.
摘要:
The invention makes it possible to form a hologram for reproducing a three-dimensional image easily free of limitations placed by the size of the three-dimensional image to be reproduced, the size of the hologram and reference light for reproduction. A controller calculates a three-dimensional interference pattern for generating reproduction light associated with a desired three-dimensional image when a recording medium (1) is illuminated with reference light for reproduction, divides the three-dimensional interference pattern into partial interference patterns and calculates reference light and information light for recording for each of the partial interference patterns. A final hologram is formed by illuminating the recording medium (1) with reference light and information light for recording using a head (10) while changing the relative positional relationship between the recording medium (1) and the head (10) by moving the head (10) with a VCM (13) while transporting the recording medium (1).