摘要:
A matrix transformer and/or inductor module has its terminations bonded rigidly to the ferrite core of which it is made. Because the ferrite core is strong and dimensionally stable, the terminations are rugged and precisely located, important criteria for assembly to printed circuit boards and the like, especially if automated assembly methods are used. In another embodiment, the module has top and bottom metal plates which are the high current output terminals. This module can be mounted sandwiched between live heat sinks. In another embodiment, deep grooves are made into the core material, and fins are bonded into the grooves. The grooves reduce core losses by reducing eddy currents and dimensional resonance effects, and the fins remove heat from within the core allowing operation at much higher flux density and frequency.
摘要:
A method for fabricating a capacitor in a semiconductor device includes forming a semiconductor device having a source, a drain, and a gate on a semiconductor substrate, forming an interlayer insulating film having a contact hole exposing the source, forming a conductive layer in the contact hole, forming a lower electrode on the interlayer insulating film, inclusive of the conductive layer, coating an insulating material on the lower electrode for forming a dielectric film, subjecting the insulating material to a first rapid thermal annealing of a first temperature in a chamber, to form nuclei oriented along an a-b axis, subjecting the insulating material to a second rapid thermal annealing at a second temperature higher than the first temperature in the chamber, to grow the nuclei oriented along the a-b axis, to form a dielectric film, and forming an upper electrode on the dielectric film.
摘要:
A ferroelectric capacitor electrode contact structure comprising an insulator (4) placed over a substrate (2) and containing a transistor source (6) and transistor drain (8) between the substrate (2) and the insulator (4). The insulator (4) contains a source plug (10) and a conductive drain plug (12). The transistor source (6) is electrically connected to the source plug (10). The transistor drain (8) is electrically connected to the conductive drain plug (12). A transistor gate (14) is between the source plug (10) and a conductive drain plug (12) and is contained by the insulator (4). Metal wiring (16) is electrically connected to the source plug (10). A barrier film (18) is placed over the insulator (4) and the conductive drain plug (12). The bottom electrode (20) is placed over the barrier film (18). The ferroelectric layer (22) is placed over the bottom electrode (20). The top electrode (24) is placed over the ferroelectric layer (22).