摘要:
A method for fabricating a semiconductor device includes the steps of forming a PbTiOx film having a predominantly (111) orientation on a lower electrode as a nucleation layer by an MOCVD process with a film thickness exceeding 2 nm, and forming a PZT film having a predominantly (111) orientation on the nucleation layer, wherein the step of forming the PbTiOx film is conducted under an oxygen partial pressure of less than 340 Pa.
摘要:
An embodiment of the instant invention is a method of forming a conductive contact to a top electrode (308 and 310 of FIG. 4d) of a ferroelectric capacitor comprised of a bottom electrode (304 of FIG. 4d) situated under the top electrode and a ferroelectric material (306 of FIG. 4d) situated between the top electrode and the bottom electrode, the method comprising the steps of: forming a layer (408 or 312 of FIG. 4) over the top electrode; forming an opening (414 of FIG. 4d) in the layer to expose a portion of the top electrode by etching the opening into the layer using a hydrogen-free etchant; and depositing conductive material (432 of FIG. 4d) in the opening to form an electrical connection with the top electrode.
摘要:
Ferroelectric memory with one-capacitor/one-transistor cells and a reference cell with double the capacitance plus a sense amplifier for comparing transient currents in resistors at the sense amplifier inputs. The reference cell includes a diode to prevent reference capacitor polarization switching.
摘要:
A film forming apparatus includes a process chamber 2 configured to accommodate a semiconductor wafer W; a worktable 5 disposed inside the process chamber 2 and configured to place the semiconductor wafer W thereon; a showerhead 40 used as a process gas delivery mechanism disposed to face the worktable 5 and configured to delivery a process gas into the process chamber 2; and an exhaust unit 101 configured to exhaust gas from inside the process chamber 2, wherein the showerhead 40 has a gas passage formed therein for supplying the process gas, and an annular temperature adjusting cell 400 formed therein around the gas passage.
摘要:
A method for fabricating a semiconductor device includes the steps of forming a PbTiOx film having a predominantly (111) orientation on a lower electrode as a nucleation layer by an MOCVD process with a film thickness exceeding 2 nm, and forming a PZT film having a predominantly (111) orientation on the nucleation layer, wherein the step of forming the PbTiOx film is conducted under an oxygen partial pressure of less than 340 Pa.
摘要:
A method for integrating a metal-containing film in a semiconductor device, for example a gate stack. In one embodiment, the method includes providing a substrate in a process chamber, depositing the tungsten-containing film on the substrate at a first substrate temperature by exposing the substrate to a deposition gas containing a tungsten carbonyl precursor, heat treating the tungsten-containing film at a second substrate temperature greater than the first substrate temperature to remove carbon monoxide gas from the tungsten-containing film, and forming a barrier layer on the heat treated tungsten-containing film. Examples of tungsten-containing films include W, WN, WSi, and WC. Additional embodiments include depositing metal-containing films containing Ni, Mo, Co, Rh, Re, Cr, or Ru from the corresponding metal carbonyl precursors.
摘要:
A shower head formed by stacking a shower base, a gas diffusion plate, and a shower plate and supplying material gas and oxidizer gas to a wafer on a loading table through a first gas diffusion part and a second gas diffusion part formed in both faces of the gas diffusion plate, first gas outlets formed in the shower plate and communicating with a first gas diffusion space, and second gas outlets formed in the shower plate and communicating with a second gas diffusion space. A plurality of heat transfer columns fitted closely to the lower surface of the shower base are installed in the first gas diffusion part so that portions therebetween can form the first gas diffusion space, and radiant heat from the loading table is transmitted by the heat transfer columns in the thickness direction of the shower head.
摘要:
A method for integrating a metal-containing film in a semiconductor device, for example a gate stack. In one embodiment, the method includes providing a substrate in a process chamber, depositing the tungsten-containing film on the substrate at a first substrate temperature by exposing the substrate to a deposition gas containing a tungsten carbonyl precursor, heat treating the tungsten-containing film at a second substrate temperature greater than the first substrate temperature to remove carbon monoxide gas from the tungsten-containing film, and forming a barrier layer on the heat treated tungsten-containing film. Examples of tungsten-containing films include W, WN, WSi, and WC. Additional embodiments include depositing metal-containing films containing Ni, Mo, Co, Rh, Re, Cr, or Ru from the corresponding metal carbonyl precursors.
摘要:
The present invention is directed to a method of forming an FeRAM integrated circuit, which includes forming a sidewall diffusion barrier prior to etching the bottom electrode diffusion barrier layer. The sidewall diffusion barrier layer is then etched prior to the bottom electrode diffusion barrier layer. In patterning an AlOx sidewall diffusion barrier layer prior to etching the underlying bottom electrode diffusion barrier layer, the etch chemistry comprises BCl3+Ar. The BCl3 is effective in etching the AlOx with a good selectivity to the underlying nitride hard mask on top of the capacitor stack (e.g., TiAlN) and nitride bottom electrode diffusion barrier (e.g., TiAlON with small oxygen content) between the neighboring capacitor stacks. The Ar may be added to the etch chemistry because the resulting surface (of a top portion of the hard mask and the bottom electrode diffusion barrier) is smoother.
摘要:
A ferroelectric capacitor electrode contact structure comprising an insulator (4) placed over a substrate (2) and containing a transistor source (6) and transistor drain (8) between the substrate (2) and the insulator (4). The insulator (4) contains a source plug (10) and a conductive drain plug (12). The transistor source (6) is electrically connected to the source plug (10). The transistor drain (8) is electrically connected to the conductive drain plug (12). A transistor gate (14) is between the source plug (10) and a conductive drain plug (12) and is contained by the insulator (4). Metal wiring (16) is electrically connected to the source plug (10). A barrier film (18) is placed over the insulator (4) and the conductive drain plug (12). The bottom electrode (20) is placed over the barrier film (18). The ferroelectric layer (22) is placed over the bottom electrode (20). The top electrode (24) is placed over the ferroelectric layer (22).