Abstract:
A mercury-dispensing device is disclosed that includes a mercury dispenser having the formula Ti.sub.x Zr.sub.y Hg.sub.z in which x and y are between 0 and 13, inclusive, the quantity x+y is between 3 and 13, inclusive, and z is 1 or 2; and a promoter that comprises copper, silicon and possibly a third metal selected among the transition elements. A getter material selected among titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, and alloys of these metals with nickel, iron or aluminum can be included in the device. The mercury dispense, promoter and optional getter material are provided preferably in the form of powders compressed as a pellet, or contained in a ring-shaped metallic support or rolled on the surfaces of a metallic strip. Also disclosed is a process for introducing mercury into electron tubes by making use of the above-mentioned mercury-dispensing devices.
Abstract:
A mercury-dispensing device is disclosed that includes a mercury dispenser having the formula Ti.sub.x Zr.sub.y Hg.sub.z in which x and y are between 0 and 13, inclusive, the quantity x+y is between 3 and 13, inclusive, and z is 1 or 2; and a promoter that comprises copper, silicon and possibly a third metal selected among the transition elements. A getter material selected among titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, and alloys of these metals with nickel, iron or aluminum can be included in the device. The mercury dispenser, promoter and optional getter material are provided preferably in the form of powders compressed as a pellet, or contained in a ring-shaped metallic support or rolled on the surfaces of a metallic strip. Also disclosed is a process for introducing mercury into electron tubes by making use of the above-mentioned mercury-dispensing devices.
Abstract:
A mercury emitting structure with an annular receptacle having a groove at the upper end, in which a face-centered cubic lattice type intermetallic compound consisting mainly of yttrium, nickel and mercury is filled.
Abstract:
A mercury-dispensing device is disclosed that includes a mercury dispenser comprising an intermetallic compound including mercury and a second metal selected from the group consisting of titanium, zirconium, and mixtures thereof; and a promoter that comprises copper, tin and at least a third metal selected among the rare earth elements. A getter material selected among titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, and alloys of these metals with nickel, iron or aluminum can be included in the device. The mercury dispenser, promoter and optional getter material are provided preferably in the form of powders compressed as a pellet, or contained in a ring-shaped metallic support or rolled on the surfaces of a metallic strip. Also disclosed is a process for introducing mercury into electron tubes by making use of the above-mentioned mercury-dispensing devices.
Abstract:
MERCURY RELEASING COMPOSITIONS EMPLOYING INTERMETALLIC COMPOUNDS OF MERCURY WITH ZIRCONIUM AND/OR TITANIUM SUCH AS ZR3HG AND TI3HG USEFUL TO CHARGE ELECTRON TUBES WITH MERCURY.
Abstract:
Energy-saving lamps contain a gas filling of mercury vapour and argon in a gas discharge bulb. Amalgam spheres are used for filling the gas discharge bulb with mercury. A tin amalgam having a high proportion by weight of mercury in the range from 30 to 70% by weight is proposed. Owing to the high mercury content, the amalgam spheres have liquid amalgam phases on the surface. Coating of the spheres with a tin or tin alloy powder converts the liquid amalgam phases on the surface into a solid amalgam having a high tin content. This prevents conglutination of the amalgam spheres during storage and processing.
Abstract:
A mercury dispensing device is disclosed that includes a mercury dispenser having the formula Ti.sub.x Zr.sub.y Hg.sub.z in which x and y are between 0 and 13, inclusive, the quantity x+y is between 3 and 13, inclusive, and z is 1 or 2; and a promoter that comprises copper, silicon and possibly a third metal selected among the transition elements. A getter material selected among titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, and alloys of these metals with nickel, iron or aluminum can be included in the device. The mercury dispenser, promoter and optional getter material are provided preferably in the form of powders compressed as a pellet, or contained in a ring-shaped metallic support or rolled on the surfaces of a metallic strip. Also disclosed is a process for introducing mercury into electron tubes by making use of the above-mentioned mercury-dispensing devices.
Abstract:
A low-pressure mercury discharge lamp is provided with a light-transmitting discharge vessel (10) which contains mercury and a rare gas and which comprises means (20) for maintaining an electric discharge in the discharge vessel. A metal holder (30) supporting an amalgam (31) is arranged in the discharge vessel. The holder (30) is a metal plate (33) bent about an axis (32), portions (34a, 34b) of the plate bent towards one another defining a slot (35), while the holder is pinched together at its ends (36) and the amalgam (31) coats the holder on an internal surface (37) thereof. The manufacture of the holder is simple.
Abstract:
To be able to handle minute quantities of liquid mercury or liquid mercurylloy, for example to introduce said minute quantities into the discharge vessel of a discharge lamp, a retention body in form of a pill or pellet is formed which is a porous of a metal or mixture of metals or metal alloys which have a melting point above 250.degree. C., are not wetted by mercury, and do not form an alloy with mercury. To make such a body which, for example, is made of iron, iron and copper--to reduce oxidation, nickel and copper or iron, chromium and possibly also nickel, a metal salt of the respective metal is electrolytically enriched with mercury to form a mercury--metal suspension; in case of several metals, the suspensions are mixed, coated with aqueous-free glycerine, tempered, washed, dried, non-absorbed mercury is filtered off, and the resulting filter cake is pressed out at high pressure, of 5 to 60.multidot.10.sup.7 Pascal; the brittle pressed body is pulverized and pellets of dimensions of about 1.5 mm by under 0.5 mm height are formed as press bodies, the mercury content of which can be controlled within suitable ranges by controlling the pressing-out pressure.